OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 11 — Nov. 1, 2000
  • pp: 1899–1917

Revisiting spatial vision: toward a unifying model

Laurent Itti, Christof Koch, and Jochen Braun  »View Author Affiliations


JOSA A, Vol. 17, Issue 11, pp. 1899-1917 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001899


View Full Text Article

Acrobat PDF (1412 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report contrast detection, contrast increment, contrast masking, orientation discrimination, and spatial frequency discrimination thresholds for spatially localized stimuli at 4° of eccentricity. Our stimulus geometry emphasizes interactions among overlapping visual filters and differs from that used in previous threshold measurements, which also admits interactions among distant filters. We quantitatively account for all measurements by simulating a small population of overlapping visual filters interacting through divisive inhibition. We depart from previous models of this kind in the parameters of divisive inhibition and in using a statistically efficient decision stage based on Fisher information. The success of this unified account suggests that, contrary to Bowne [Vision Res. <b>30</b>, 449 (1990)], spatial vision thresholds reflect a single level of processing, perhaps as early as primary visual cortex.

© 2000 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6100) Vision, color, and visual optics : Spatial discrimination
(330.7310) Vision, color, and visual optics : Vision

Citation
Laurent Itti, Christof Koch, and Jochen Braun, "Revisiting spatial vision: toward a unifying model," J. Opt. Soc. Am. A 17, 1899-1917 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-11-1899


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. P. Thomas, “Model of the function of receptive fields in human vision,” Psychol. Rev. 77, 121–134 (1970).
  2. N. Graham and J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channels models,” Vision Res. 11, 251–259 (1971).
  3. M. B. Sachs, J. Nachmias, and J. G. Robson, “Spatial-frequency channels in human vision,” J. Opt. Soc. Am. 61, 1176–1186 (1971).
  4. J. Nachmias and R. V. Sansbury, “Letter: grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
  5. C. F. Stromeyer and S. Klein, “Spatial frequency channels in human vision as asymmetric (edge) mechanisms,” Vision Res. 14, 1409–1420 (1974).
  6. G. E. Legge and J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
  7. H. R. Wilson and J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
  8. H. R. Wilson, “Nonlinear processes in visual pattern discrimination,” Proc. Natl. Acad. Sci. USA 90, 9785–9790 (1993).
  9. J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710–1719 (1994).
  10. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237–260 (1969).
  11. H. R. Wilson, D. K. McFarlane, and G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
  12. G. C. Phillips and H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
  13. C. F. Stromeyer and S. Klein, “Evidence against narrow-band spatial frequency channels in human vision: the detectability of frequency modulated gratings,” Vision Res. 15, 899–910 (1975).
  14. N. Graham and J. G. Robson, “Summation of very close spatial frequencies: the importance of spatial probability summation,” Vision Res. 27, 1997–2007 (1987).
  15. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).
  16. L. Maffei and A. Fiorentini, “The visual cortex as a spatial frequency analyser,” Vision Res. 13, 1255–1267 (1973).
  17. R. L. DeValois, D. G. Albrecht, and L. G. Thorell, “Spatial-frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545–559 (1982).
  18. R. L. DeValois and K. K. DeValois, Spatial Vision (Oxford U. Press, New York, 1988).
  19. H. R. Wilson, D. Levi, L. Maffei, J. Rovamo, and R. De Valois, “The perception of form: retina to striate cortex,” in Visual Perception: The Neurophysiological Foundations, L. Spillmann and J. S. Werner, eds. (Academic, San Diego, Calif., 1990), pp. 231–272.
  20. W. S. Geisler and D. G. Albrecht, “Visual cortex neurons in monkeys and cats: detection, discrimination, and identification,” Visual Neurosci. 14, 897–919 (1997).
  21. J. Ross and H. D. Speed, “Contrast adaptation and contrast masking in human vision,” Proc. R. Soc. London Ser. B 246, 61–69 (1991).
  22. C. A. Burbeck and D. Regan, “Independence of orientation and size in spatial discriminations,” J. Opt. Soc. Am. 73, 1691–1694 (1983).
  23. A. Bradley and B. C. Skottun, “The effects of large orientation and spatial frequency differences on spatial discriminations,” Vision Res. 24, 1889–1896 (1984).
  24. H. R. Wilson and D. J. Gelb, “Modified line-element theory for spatial-frequency and width discrimination,” J. Opt. Soc. Am. A 1, 124–131 (1984).
  25. S. A. Klein and D. M. Levi, “Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation,” J. Opt. Soc. Am. A 2, 1170–1190 (1985).
  26. H. R. Wilson, “Responses of spatial mechanisms can explain hyperacuity,” Vision Res. 26, 453–469 (1986).
  27. H. R. Wilson, “Model of peripheral and amblyopic hyperacuity,” Vision Res. 31, 967–982 (1991).
  28. U. Polat and D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res. 33, 993–999 (1993).
  29. U. Polat and D. Sagi, “The architecture of perceptual spatial interactions,” Vision Res. 34, 73–78 (1994).
  30. F. Wilkinson, H. R. Wilson, and D. Ellemberg, “Lateral interactions in peripherally viewed texture arrays,” J. Opt. Soc. Am. A 14, 2057–2068 (1997).
  31. J. J. Knierim and D. C. van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961–980 (1992).
  32. M. K. Kapadia, M. Ito, C. D. Gilbert, and G. Westheimer, “Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys,” Neuron 15, 843–856 (1995).
  33. A. M. Sillito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davis, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492–496 (1995).
  34. U. Polat and A. M. Norcia, “Neurophysiological evidence for contrast dependent long-range facilitation and suppression in the human visual cortex,” Vision Res. 36, 2099–2109 (1996).
  35. J. B. Levitt and J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature 387, 73–76 (1997).
  36. U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, and A. M. Norcia, “Collinear stimuli regulate visual responses depending on cell’s contrast threshold,” Nature 391, 580–584 (1998).
  37. J. Malik and P. Perona, “Preattentive texture discrimination with early vision mechanisms,” J. Opt. Soc. Am. A 7, 923–932 (1990).
  38. M. S. Landy and J. R. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
  39. D. J. Field, A. Hayes, and R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
  40. M. B. Ben-Av and D. Sagi, “Perceptual grouping by similarity and proximity: experimental results can be predicted by intensity autocorrelations,” Vision Res. 35, 853–866 (1995).
  41. M. Ito, G. Westheimer, and C. D. Gilbert, “Attention and perceptual learning modulate contextual influences on visual perception,” Neuron 20, 1191–1197 (1998).
  42. H. R. Wilson and R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
  43. B. Zenger and D. Sagi, “Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection,” Vision Res. 36, 2497–2513 (1996).
  44. J. M. Foley and C. C. Chen, “Analysis of the effect of pattern adaptation on pattern pedestal effects: a two-process model,” Vision Res. 37, 2779–2788 (1997).
  45. J. P. Thomas and L. A. Olzak, “Contrast gain control and fine spatial discriminations,” J. Opt. Soc. Am. A 14, 2392–2405 (1997).
  46. H. R. Wilson, “A transducer function for threshold and suprathreshold human vision,” Biol. Cybern. 38, 171–178 (1980).
  47. T. B. Lawton and C. W. Tyler, “On the role of X and simple cells in human contrast processing,” Vision Res. 34, 659–667 (1994).
  48. K. Toyama, M. Kimura, and K. Tanaka, “Cross-correlation analysis of interneuronal connectivity in cat visual cortex,” J. Neurophysiol. 46, 191–201 (1981).
  49. Y. Hata, T. Tsumoto, H. Sato, and H. Tamura, “Horizontal interactions between visual cortical neurones studied by cross-correlation analysis in the cat,” J. Physiol. (London) 441, 593–614 (1991).
  50. A. B. Bonds, “Temporal dynamics of contrast gain in single cells of the cat striate cortex,” Visual Neurosci. 6, 239–255 (1991).
  51. W. S. Geisler and D. G. Albrecht, “Cortical neurons: isolation of contrast gain control,” Vision Res. 32, 1409–1410 (1992).
  52. D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neurosci. 9, 181–197 (1992).
  53. M. Carandini and D. J. Heeger, “Summation and division by neurons in primate visual cortex,” Science 264, 1333–1336 (1994).
  54. B. Ahmed, J. D. Allison, R. J. Douglas, and K. A. Martin, “An intracellular study of the contrast-dependence of neuronal activity in cat visual cortex,” Cereb. Cortex 7, 559–570 (1997).
  55. I. A. Shevelev, R. V. Novikova, N. A. Lazareva, A. S. Tikhomirov, and G. A. Sharaev, “Sensitivity to cross-like figures in the cat striate neurons,” Neuroscience 69, 51–57 (1995).
  56. G. C. DeAngelis, J. G. Robson, I. Ohzawa, and R. D. Freeman, “Organization of suppression in receptive fields of neurons in cat visual cortex,” J. Neurophysiol. 68, 144–163 (1992).
  57. P. C. Teo and D. J. Heeger, “Perceptual image distortion,” in Human Vision, Visual Processing, and Digital Display V, B. E. Rogowitz and J. P. Allebach, eds., Proc. SPIE 2179, 127–129 (1995).
  58. A. B. Watson and J. A. Solomon, “Model of visual contrast gain control and pattern masking,” J. Opt. Soc. Am. A 14, 2379–2391 (1997).
  59. M. Carandini and D. L. Ringach, “Predictions of a recurrent model of orientation selectivity,” Vision Res. 37, 3061–3071 (1997).
  60. D. C. Somers, S. B. Nelson, and M. Sur, “An emergent model of orientation selectivity in cat visual cortical simple cells,” J. Neurosci. 15, 5448–5465 (1995).
  61. P. Adorjan, J. B. Levitt, J. S. Lund, and K. Obermayer, “A model for the intracortical origin of orientation preference and tuning in macaque striate cortex,” Visual Neurosci. 16, 303–318 (1999).
  62. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. (London) 160, 106–154 (1962).
  63. M. Carandini, D. J. Heeger, and J. A. Movshon, “Linearity and normalization in simple cells of the macaque primary visual cortex,” J. Neurosci. 17, 8621–8644 (1997).
  64. A. Pouget, K. Zhang, S. Deneve, and P. E. Latham, “Statistically efficient estimation using population coding,” Neural Comput. 10, 373–401 (1998).
  65. J. Hirsch and R. Hylton, “Limits of spatial-frequency discrimination as evidence of neural interpolation,” J. Opt. Soc. Am. 72, 1367–1374 (1982).
  66. J. P. Thomas, “Underlying psychometric function for detecting gratings and identifying spatial frequency,” J. Opt. Soc. Am. 73, 751–758 (1983).
  67. E. S. Richter and D. Yager, “Spatial-frequency difference thresholds for central and peripheral viewing,” J. Opt. Soc. Am. A 1, 1136–1139 (1984).
  68. S. F. Bowne, “Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination,” Vision Res. 30, 449–461 (1990).
  69. D. G. Albrecht and W. S. Geisler, “Motion selectivity and the contrast-response function of simple cells in the visual cortex,” Visual Neurosci. 7, 531–546 (1991).
  70. D. K. Lee, L. Itti, C. Koch, and J. Braun, “Attention activates winner-take-all competition among visual filters,” Nat. Neurosci. 2, 375–381 (1999).
  71. C. W. Tyler, “Color bit-stealing to enhance the luminance resolution of digital displays on a single pixel basis,” Spatial Vis. 10, 369–377 (1997).
  72. A. B. Watson, “Neural contrast sensitivity,” in Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1990), pp. 95–108.
  73. W. A. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 292–297 (1951).
  74. A. Cowey and E. T. Rolls, “Human cortical magnification factor and its relation to visual acuity,” Exp. Brain Res. 21, 447–454 (1974).
  75. G. G. Blasdel and G. Salama, “Voltage-sensitive dyes reveal a modular organization in monkey striate cortex,” Nature 321, 579–585 (1986).
  76. B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
  77. D. A. Pollen and S. F. Ronner, “Phase relationships between adjacent simple cells in the visual cortex,” Science 212, 1409–1411 (1981).
  78. M. Carandini, J. A. Movshon, and D. Ferster, “Pattern adaptation and cross-orientation interactions in the primary visual cortex,” Neuropharmacology 37, 501–511 (1998).
  79. W. R. Softky and C. Koch, “The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs,” J. Neurosci. 13, 334–350 (1993).
  80. M. C. Teich, R. G. Turcott, and R. M. Siegel, “Temporal correlation in cat striate-cortex neural spike trains,” IEEE Eng. Med. Biol. Mag. Sept.–Oct. 1996, pp. 79–87.
  81. D. M. Green and J. A. Swets, Signal Detectability and Psychophysics (Wiley, New York, 1966).
  82. L. L. Scharf, Statistical Signal Processing: Detection, Estimation and Time-Series Analysis (Addison-Wesley, Reading, Mass., 1991).
  83. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, New York, 1991).
  84. H. P. Snippe and J. J. Koenderink, “Information in channel-coded systems: correlated receivers,” Biol. Cybern. 67, 183–190 (1992).
  85. G. Mato and H. Sompolinsky, “Neural network models of perceptual learning of angle discrimination,” Neural Comput. 8, 270–299 (1996).
  86. H. S. Seung and H. Sompolinsky, “Simple models for reading neuronal population codes,” Proc. Natl. Acad. Sci. USA 90, 10749–10753 (1993).
  87. S. Magnussen, M. W. Greenlee, and J. P. Thomas, “Parallel processing in visual short-term memory,” J. Exp. Psychol. Human Percept. Perform. 22, 202–212 (1996).
  88. H. Dai, Q. Nguyen, and D. M. Green, “Decision rules of listeners in spectral-shape discrimination with or without signal-frequency uncertainty,” J. Acoust. Soc. Am. 99, 2298–2306 (1996).
  89. H. Dai, “Signal-frequency uncertainty in spectral-shape discrimination: psychometric functions,” J. Acoust. Soc. Am. 96, 1388–1396 (1994).
  90. P. Verghese and L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995).
  91. R. F. Quick, “A vector-magnitude model of contrast detection,” Kybernetik 16, 1299–1302 (1974).
  92. M. W. Greenlee, “Spatial frequency discrimination of band-limited periodic targets: effects of stimulus contrast, bandwidth and retinal eccentricity,” Vision Res. 32, 275–283 (1992).
  93. L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249–258 (1996).
  94. R. Vogels and G. A. Orban, “How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey,” J. Neurosci. 10, 3543–3558 (1990).
  95. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  96. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953).
  97. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
  98. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984).
  99. J. P. Guilford, Psychometric Methods (McGraw-Hill, New York, 1954).
  100. A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, and R. D. Freeman, “Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination,” J. Opt. Soc. Am. A 2, 1607–1610 (1985).
  101. M. A. Garcia-Perez and V. Sierra-Vazquez, “Do channels shift their tuning towards lower spatial frequencies in the periphery?” Vision Res. 36, 3339–3372 (1996).
  102. H. Sompolinsky and R. Shapley, “New perspectives on the mechanisms for orientation selectivity,” Curr. Opin. Neurobiol. 7, 514–522 (1997).
  103. S. Deneve, P. E. Latham, and A. Pouget, “Reading population codes: a neural implementation of ideal observers [in process citation],” Nat. Neurosci. 2, 740–745 (1999).
  104. J. M. Crook, Z. F. Kisvarday, and U. T. Eysel, “GABA-induced inactivation of functionally characterized sites in cat striate cortex: effects on orientation tuning and direction selectivity,” Visual Neurosci. 14, 141–158 (1997).
  105. L. A. Olzak and J. P. Thomas, “When orthogonal orientations are not processed independently,” Vision Res. 31, 51–57 (1991).
  106. D. G. Albrecht and D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982).
  107. W. S. Geisler and D. G. Albrecht, “Bayesian analysis of identification performance in monkey visual cortex: nonlinear mechanisms and stimulus certainty,” Vision Res. 35, 2723–2730 (1995).
  108. K. H. Britten, M. N. Shadlen, W. T. Newsome, and J. A. Movshon, “The analysis of visual motion: a comparison of neuronal and psychophysical performance,” J. Neurosci. 12, 4745–4765 (1992).
  109. E. Zohary, M. N. Shadlen, and W. T. Newsome, “Correlated neuronal discharge rate and its implications for psychophysical performance,” Nature 370, 140–143 (1994); erratum 371, 358 (1994).
  110. M. N. Shadlen, K. H. Britten, W. T. Newsome, and J. A. Movshon, “A computational analysis of the relationship between neuronal and behavioral responses to visual motion,” J. Neurosci. 16, 1486–1510 (1996).
  111. T. J. Gawne, T. W. Kjaer, J. A. Hertz, and B. J. Richmond, “Adjacent visual cortical complex cells share about 20% of their stimulus-related information,” Cereb. Cortex 6, 482–489 (1996).
  112. R. J. Douglas, C. Koch, M. Mahowald, K. A. Martin, and H. H. Suarez, “Recurrent excitation in neocortical circuits,” Science 269, 981–985 (1995).
  113. G. R. Holt and C. Koch, “Shunting inhibition does not have a divisive effect on firing rates,” Neural Comput. 9, 1001–1013 (1997).
  114. D. Ferster and C. Koch, “Neuronal connections underlying orientation selectivity in cat visual cortex,” Trends Neurosci. 10, 187–192 (1987).
  115. J. Bolz, C. D. Gilbert, and T. N. Wiesel, “Pharmacological analysis of cortical circuitry,” Trends Neurosci. 12, 292–296 (1989).
  116. L. C. Katz, C. D. Gilbert, and T. N. Wiesel, “Local circuits and ocular dominance columns in monkey striate cortex,” J. Neurosci. 9, 1389–1399 (1989).
  117. A. Das and C. D. Gilbert, “Topography of contextual modulations mediated by short-range interactions in pri-mary visual cortex,” Nature 399, 655–661 (1999).
  118. R. J. Douglas and K. A. Martin, “A functional microcircuit for cat visual cortex,” J. Physiol. (London) 440, 735–769 (1991).
  119. D. Ferster, “Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex,” J. Neurosci. 6, 1284–1301 (1986).
  120. D. Ferster, “Spatially opponent excitation and inhibition in simple cells of the cat visual cortex,” J. Neurosci. 8, 1172–1180 (1988).
  121. A. S. Ramoa, M. Shadlen, B. C. Skottun, and R. D. Freeman, “A comparison of inhibition in orientation and spatial frequency selectivity of cat visual cortex,” Nature 321, 237–239 (1986).
  122. R. W. Bowen and H. R. Wilson, “A two-process analysis of pattern masking,” Vision Res. 34, 645–657 (1994).
  123. D. K. Lee, C. Koch, and J. Braun, “Spatial vision thresholds in the near absence of attention,” Vision Res. 37, 2409–2418 (1997).
  124. L. Itti, J. Braun, D. K. Lee, and C. Koch, “Attentional modulation of human pattern discrimination psychophysics reproduced by a quantitative model,” in Advances in Neural Information Processing Systems, Vol. 11, M. S. Kearns, S. A. Solla, and D. A. Cohn, eds. (MIT Press, Cambridge, Mass., 1999, pp. 699–705).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited