OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 11 — Nov. 1, 2000
  • pp: 2001–2004

General propagation equation of flattened Gaussian beams

Baida Lü and Shirong Luo  »View Author Affiliations


JOSA A, Vol. 17, Issue 11, pp. 2001-2004 (2000)
http://dx.doi.org/10.1364/JOSAA.17.002001


View Full Text Article

Enhanced HTML    Acrobat PDF (136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The closed-form propagation equation of flattened Gaussian beams passing through a paraxial optical ABCD system, in which the linear gain and absorption media are included, is derived, and its general applicable advantage is illustrated with numerical examples.

© 2000 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(140.4480) Lasers and laser optics : Optical amplifiers
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: November 15, 1999
Revised Manuscript: June 13, 2000
Manuscript Accepted: June 13, 2000
Published: November 1, 2000

Citation
Baida Lü and Shirong Luo, "General propagation equation of flattened Gaussian beams," J. Opt. Soc. Am. A 17, 2001-2004 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-11-2001


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335–341 (1994). [CrossRef]
  2. V. Bagini, R. Borghi, F. Gori, A. M. Pacileo, M. Santarsiero, “Propagation of axially symmetric flattened Gaussian beams,” J. Opt. Soc. Am. A 13, 1385–1394 (1996). [CrossRef]
  3. S.-A. Amarande, “Beam propagation factor and kurtosis parameter of flattened Gaussian beams,” Opt. Commun. 129, 311–317 (1996). [CrossRef]
  4. M. Santarsiero, D. Aiello, R. Borghi, S. Vicalvi, “Focus-ing of axially symmetric flattened Gaussian beams,” J. Mod. Opt. 44, 633–650 (1997). [CrossRef]
  5. R. Borghi, M. Santarsiero, S. Vicalvi, “Focal shift of focused flat-topped beams,” Opt. Commun. 154, 243–248 (1998). [CrossRef]
  6. B. Lü, S. Luo, B. Zhang, “A comparison between the flattened Gaussian beam and super-Gaussian beam,” Optik 110, 285–287 (1999).
  7. B. Lü, S. Luo, B. Zhang, “Propagation of flattened Gaussian beams with rectangular symmetry passing through a paraxial optical ABCD system with and without aperture,” Opt. Commun. 164, 1–6 (1999). [CrossRef]
  8. B. Lü, B. Zhang, S. Luo, “Far-field intensity distribution, M2 factor, and propagation of flattened Gaussian beams,” Appl. Opt. 20, 4581–4584 (1999).
  9. R. Borghi, M. Santarsiero, “Modal decomposition of partially coherent flat-topped beams produced by multimode lasers,” Opt. Lett. 23, 313–315 (1998). [CrossRef]
  10. B. Lü, S. Luo, B. Zhang, “Propagation of three-dimensional flattened Gaussian beams,” J. Mod. Opt. 46, 1753–1762 (1999). [CrossRef]
  11. C. Palma, P. De Santis, G. Cincotti, G. Guattari, “Propagation of partially coherent beams in absorbing media,” J. Mod. Opt. 42, 1123–1135 (1995). [CrossRef]
  12. C. Palma, P. De Santis, G. Cincotti, G. Guattari, “Propagation and coherence evolution of optical beams in gain media,” J. Mod. Opt. 43, 139–153 (1996). [CrossRef]
  13. S. A. Collins, “Lens-system diffraction integral written terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
  14. A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of Integral Transforms (McGraw-Hill, New York, 1954), Vol. 1, pp. 146, 386.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited