OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 11 — Nov. 1, 2000
  • pp: 2105–2107

Poincaré sphere representation of the fixed-polarizer rotating-retarder optical system

R. M. A. Azzam  »View Author Affiliations

JOSA A, Vol. 17, Issue 11, pp. 2105-2107 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The trajectory of the polarization state of a monochromatic light beam after it passes through a fixed linear polarizer and a rotating linear retarder of arbitrary retardance Δ is determined on the Poincaré sphere. The three-dimensional figure-8 contour is shown to be the line of intersection of a right-circular cylinder with the sphere. The cylinder is parallel to the polar (s3) axis, touches the sphere at the equator (at the point that represents the linear polarization transmitted by the fixed polarizer), and has a radius r=sin2(Δ/2). Projections of the trajectory in the coordinate planes of the normalized Stokes parameter space (s1, s2, s3) are also determined.

© 2000 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(230.0230) Optical devices : Optical devices
(260.5430) Physical optics : Polarization

Original Manuscript: June 16, 2000
Revised Manuscript: July 21, 2000
Manuscript Accepted: July 21, 2000
Published: November 1, 2000

R. M. A. Azzam, "Poincaré sphere representation of the fixed-polarizer rotating-retarder optical system," J. Opt. Soc. Am. A 17, 2105-2107 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, New York, 1971).
  2. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978). [CrossRef] [PubMed]
  3. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987).
  4. P. S. Hauge, “Recent development in instrumentation in ellipsometry,” Surf. Sci. 96, 108–140 (1980). [CrossRef]
  5. H. Poincaré, Theorie Mathématique de la Lumière (Gauthiers-Villars, Paris, 1892), Vol. II, Chap. 12.
  6. H. G. Jerrard, “Transmission of light through birefringent and optically active media: the Poincaré sphere,” J. Opt. Soc. Am. 44, 634–640 (1954). [CrossRef]
  7. J. E. Bigelow, R. A. Kashnow, “Poincaré sphere analysis of liquid crystal optics,” Appl. Opt. 16, 2090–2096 (1977). [CrossRef] [PubMed]
  8. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804 (2000). [CrossRef]
  9. S. R. Rajagopalan, S. Ramaseshan, “Rotating elliptic analysers for the automatic analysis of polarised light—part I,” Proc. Indian Acad. Sci. Sect. A 60, 297–312 (1964).
  10. R. M. A. Azzam, T. L. Bundy, N. M. Bashara, “The fixed-polarizer nulling scheme in generalized ellipsometry,” Opt. Commun. 7, 110–115 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited