OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 12 — Dec. 1, 2000
  • pp: 2177–2190

Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part II. Properties and implementation

Lindsay C. Botten, Nicolae-Alexandru P. Nicorovici, Ara A. Asatryan, Ross C. McPhedran, C. Martijn de Sterke, and Peter A. Robinson  »View Author Affiliations


JOSA A, Vol. 17, Issue 12, pp. 2177-2190 (2000)
http://dx.doi.org/10.1364/JOSAA.17.002177


View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical implementation and generalized conservation properties of a formulation for calculating wave propagation through stacked gratings comprising metallic and dielectric cylinders are presented. The basic formulation of the method was given in a companion paper [J. Opt. Soc. Am. A. 17, 2165 (2000)]. Here, details of the numerical implementation of the method are discussed and are illustrated for the ensemble average of a strongly scattering structure with refractive index and radius disorder. Also presented are a comprehensive treatment of energy conservation and generalized phase relations, as well as reciprocity.

© 2000 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1960) Diffraction and gratings : Diffraction theory
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics

History
Original Manuscript: December 10, 1999
Revised Manuscript: July 6, 2000
Manuscript Accepted: July 14, 2000
Published: December 1, 2000

Citation
Lindsay C. Botten, Nicolae-Alexandru P. Nicorovici, Ara A. Asatryan, Ross C. McPhedran, C. Martijn de Sterke, and Peter A. Robinson, "Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part II. Properties and implementation," J. Opt. Soc. Am. A 17, 2177-2190 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-12-2177


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. C. Botten, N. A. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. de Sterke, P. A. Robinson, “Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method,” J. Opt. Soc. Am. A 17, 2165–2176 (2000). [CrossRef]
  2. M. Nevière, G. Cerutti-Maori, M. Cadilhac, “Sur une nouvelle méthode de résolution du problème de la diffraction d’une onde plane par une réseau infiniment conducteur,” Opt. Commun. 3, 44–52 (1971).
  3. R. C. McPhedran, D. Maystre, “On the theory and solar applications of inductive grids,” Appl. Phys. 14, 1–20 (1977). [CrossRef]
  4. L. C. Botten, J. L. Adams, R. C. McPhedran, G. H. Derrick, “Symmetry properties of lossless diffraction gratings,” J. Opt. (Paris) 11, 43–52 (1980). [CrossRef]
  5. L. C. Botten, R. C. McPhedran, “Completeness and modal expansion methods in diffraction theory,” Opt. Acta 32, 1479–1488 (1985). [CrossRef]
  6. R. C. McPhedran, L. C. Botten, A. A. Asatryan, N. A. Nicorovici, P. A. Robinson, C. M. de Sterke, “Calculation of electromagnetic properties of regular and random arrays of metallic and dielectric cylinders,” Phys. Rev. E 60, 7614–7617 (1999). [CrossRef]
  7. D. Maystre, “Electromagnetic study of photonic band gaps,” Pure Appl. Opt. 3, 975–993 (1994). [CrossRef]
  8. F. Gadot, E. Akmansoy, T. Brillat, A. de Lustrac, J.-M. Lourtioz, “Band gap engineering in metallic PBG materials at microwave frequencies using composite material and defect lattice,” presented at the International Union of Theoretical and Applied Mechanics Symposium 99/4, Mechanical and Electromagnetic Waves in Structured Media, Sydney, Australia, January 18–22, 1999.
  9. A. A. Asatryan, P. A. Robinson, L. C. Botten, R. C. McPhedran, N. A. Nicorovici, C. M. de Sterke, “Effects of disorder on wave propagation in two-dimensional photonic crystals,” Phys. Rev. E 60, 6118–6127 (1999). [CrossRef]
  10. M. M. Sigalas, C.-T. Chan, K. M. Ho, C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995). [CrossRef]
  11. R. C. McPhedran, L. C. Botten, A. A. Asatryan, N. A. Nicorovici, C. M. de Sterke, P. A. Robinson, “Ordered and disordered photonic band gap materials,” Aust. J. Phys. 52, 779–789 (1999). [CrossRef]
  12. W. T. Perrins, D. R. McKenzie, R. C. McPhedran, “Transport properties of regular arrays of cylinders,” Proc. R. Soc. London, Ser. A 369, 207–225 (1979). [CrossRef]
  13. V. P. Shestopalov, Smith-Purcell Effect (Nova Science, New York, 1998).
  14. R. C. McPhedran, L. C. Botten, “Phase constraints for lossy symmetric structures,” Opt. Acta 32, 595–605 (1985). [CrossRef]
  15. R. Petit, “A tutorial introduction,” in Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, 22, R. Petit, ed. (Springer-Verlag, Berlin, 1980), pp. 1–52. [CrossRef]
  16. V. Twersky, “Elementary function representations of Schlömilch series,” Arch. Ration. Mech. Anal. 8, 323–332 (1961). [CrossRef]
  17. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935). [CrossRef]
  18. J. Pavageau, J. Bousquet, “Diffraction par un réseau conducteur nouvelle méthode de résolution,” Opt. Acta 17, 469–478 (1970). [CrossRef]
  19. J. B. Pendry, A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992). [CrossRef] [PubMed]
  20. D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett. 65, 645–647 (1994). [CrossRef]
  21. U. Grüning, V. Lehmann, S. Ottow, K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm,” Appl. Phys. Lett. 68, 747–749 (1996). [CrossRef]
  22. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, U. Oesterle, “Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 71, 738–740 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited