OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 12 — Dec. 1, 2000
  • pp: 2208–2215

High-efficiency production of propagation-invariant spot arrays

Jari Lautanen, Ville Kettunen, Pasi Laakkonen, and Jari Turunen  »View Author Affiliations


JOSA A, Vol. 17, Issue 12, pp. 2208-2215 (2000)
http://dx.doi.org/10.1364/JOSAA.17.002208


View Full Text Article

Enhanced HTML    Acrobat PDF (753 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tailoring of the transverse intensity profiles of propagation-invariant optical fields is considered. The design of diffractive elements capable of realizing such fields by Fourier synthesis is discussed. High-efficiency realization of finite-aperture approximations of the constructed fields is demonstrated in a system consisting of two multilevel diffractive elements. The first element is a diffractive toroidal lens, which focuses the incident field into a ring pattern. The second diffractive element, located at the focal plane of the first element, introduces the phase modulation necessary to realize the desired transverse intensity profile behind a separate collimating lens. The influence of the fabrication errors of the diffractive elements on the fidelity of the propagation-invariant spot array is simulated, and system-integration aspects based on substrate-mode planar-integrated optics are considered.

© 2000 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(260.1960) Physical optics : Diffraction theory

History
Original Manuscript: March 1, 2000
Revised Manuscript: July 17, 2000
Manuscript Accepted: August 11, 2000
Published: December 1, 2000

Citation
Jari Lautanen, Ville Kettunen, Pasi Laakkonen, and Jari Turunen, "High-efficiency production of propagation-invariant spot arrays," J. Opt. Soc. Am. A 17, 2208-2215 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-12-2208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  2. J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  3. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989). [CrossRef]
  4. J. Durnin, J. H. Eberly, “Diffraction-free arrangement,” U.S. patent4,887,885 (December, 19, 1989).
  5. K. Uehara, H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B: Photophys. Laser Chem. 48, 125–129 (1989). [CrossRef]
  6. J. K. Jabczynski, “A diffraction-free resonator,” Opt. Commun. 77, 292–294 (1990). [CrossRef]
  7. Y. Lin, W. Seka, J. H. Eberly, H. Huang, D. L. Brown, “Experimental investigation of Bessel beam characteristics,” Appl. Opt. 31, 2708–2713 (1992). [CrossRef] [PubMed]
  8. Z. L. Horváth, M. Erdélyi, G. Szabò, Zs. Bor, F. K. Tittel, J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997). [CrossRef]
  9. J. H. McLeod, “Axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954). [CrossRef]
  10. G. Roy, R. Tremblay, “Influence of the divergence of a laser beam to the axial intensity distribution of an axicon,” Opt. Commun. 34, 1–3 (1980). [CrossRef]
  11. E. N. Leith, G. Collins, I. Khoo, T. Wynn, “Correlation image formation with an axicon,” J. Opt. Soc. Am. 70, 141–145 (1980). [CrossRef]
  12. J. Turunen, A. Vasara, A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988). [CrossRef] [PubMed]
  13. A. Vasara, J. Turunen, A. T. Friberg, “Realization of general nondiffractive beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef] [PubMed]
  14. N. A. Davidson, A. A. Friesem, E. Hasman, “Efficient formation of nondiffracting beams with uniform intensity along the propagation direction,” Opt. Commun. 88, 326–330 (1992). [CrossRef]
  15. L. Niggl, T. Lanzl, M. Maier, “Properties of Bessel beams generated by periodic gratings of circular symmetry,” J. Opt. Soc. Am. A 14, 27–33 (1997). [CrossRef]
  16. P. Vahimaa, V. Kettunen, M. Kuittinen, J. Turunen, A. T. Friberg, “Electromagnetic analysis of nonparaxial Bessel beams generated by diffractive axicons,” J. Opt. Soc. Am. A 14, 1817–1824 (1997). [CrossRef]
  17. M. Honkanen, J. Turunen, “Tandem systems for efficient generation of uniform-axial-intensity Bessel fields,” Opt. Commun. 154, 368–375 (1998). [CrossRef]
  18. V. Kettunen, J. Turunen, “Propagation-invariant spot arrays,” Opt. Lett. 23, 1247–1249 (1998). [CrossRef]
  19. N. Guérineau, J. Primot, “Nondiffracting array generation using an N-wave interferometer,” J. Opt. Soc. Am. A 16, 293–298 (1999). [CrossRef]
  20. J. Primot, L. Sogno, “Achromatic three-wave (or more) lateral shearing interferometer,” J. Opt. Soc. Am. A 12, 2679–2685 (1995). [CrossRef]
  21. P. Laakkonen, J. Lautanen, V. Kettunen, J. Turunen, M. Schirmer, “Multilevel diffractive elements in SiO2 by electron beam lithography and proportional etching with analogue negative resist,” J. Mod. Opt. 46, 1295–1307 (1999). [CrossRef]
  22. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989). [CrossRef] [PubMed]
  23. J. Jahns, “Planar packaging of free-space optical interconnects,” Proc. IEEE 82, 1623–1631 (1994). [CrossRef]
  24. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995), Sect. 3.2.
  25. J. Turunen, F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Wiley—VCH, Berlin, 1997), Sect. 1.2.1.
  26. Ref. 25, Sect. 1.3, Chap. 6.
  27. J. A. Nedler, R. Mead, “A simplex method for function minimization,” Comput. J. (UK) 7, 308–313 (1964).
  28. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970). [CrossRef]
  29. R. K. Kostuk, Y.-T. Huang, D. Hetherington, M. Kato, “Reducing alignment and chromatic sensitivity of holographic optical interconnects using substrate-mode holograms,” Appl. Opt. 28, 4939–4944 (1989). [CrossRef] [PubMed]
  30. F. Sauer, “Fabrication of diffractive–refractive optical interconnects for infrared operation based on total internal reflection,” Appl. Opt. 28, 386–388 (1989). [CrossRef] [PubMed]
  31. J. Sochacki, S. Bará, Z. Jaroszewicz, A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17, 7–9 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited