OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 12 — Dec. 1, 2000
  • pp: 2243–2248

Characterization of antiresonant reflecting optical waveguide devices by scanning near-field optical microscopy

Xavier Borrisé, David Jiménez, Francesc Pérez-Murano, Andreu Llobera, Carlos Domínguez, and Núria Barniol  »View Author Affiliations


JOSA A, Vol. 17, Issue 12, pp. 2243-2248 (2000)
http://dx.doi.org/10.1364/JOSAA.17.002243


View Full Text Article

Acrobat PDF (799 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Silicon-based antiresonant reflecting optical waveguide (ARROW) devices were studied by means of a scanning near-field optical microscope. Various structures such as a Y junction of a Mach–Zehnder interferometer and a directional optical coupler were characterized, showing the propagation of the light inside the devices simultaneously with the topography. Scattering on the splitting point of the Y junction was shown, as well as a partial coupling of the light between the two branches of the coupler. Measurements on the decay length of the evanescent field were also performed to study the use of the ARROW waveguide for sensor purposes.

© 2000 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(180.0180) Microscopy : Microscopy
(180.5810) Microscopy : Scanning microscopy
(230.7370) Optical devices : Waveguides

Citation
Xavier Borrisé, David Jiménez, Francesc Pérez-Murano, Andreu Llobera, Carlos Domínguez, and Núria Barniol, "Characterization of antiresonant reflecting optical waveguide devices by scanning near-field optical microscopy," J. Opt. Soc. Am. A 17, 2243-2248 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-12-2243


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. G. Hunsperger, Integrated Optics (Springer, Berlin, 1995).
  2. S. Valette, S. Renard, J. P. Jadot, P. Gidon, and C. Erbeia, “Silicon-based integrated optics technology for optical sensor applications,” Sensors Actuat. A 21–23, 1087–1091 (1990).
  3. J. Janata, M. Josowicz, P. Vanysek, and D. M. DeVaney, “Chemical sensors,” Anal. Chem. 70, 179R–208R (1998).
  4. X. Borrisé, D. Jiménez, N. Barniol, F. Pérez-Murano, and X. Aymerich, “Scanning near-field optical microscope for the characterization of optical integrated waveguides,” J. Lightwave Technol. 18, 370–374 (2000).
  5. S. Bourzeix, J. M. Moison, F. Mignard, and F. Barthe, “Near-field optical imaging of light propagation in semiconductor waveguides structures,” Appl. Phys. Lett. 73, 1035–1037 (1998).
  6. M. L. M. Balistreri, D. J. W. Klunder, F. G. Blom, A. Driessen, H. W. J. M. Hoekstra, J. P. Korterik, L. Kuipers, and N. F. Van Hulst, “Visualizing the whispering gallery modes in a cylindrical optical microcavity,” Opt. Lett. 24, 1829–1831 (1999).
  7. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides: numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
  8. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
  9. C. M. Kim and R. V. Ramaswamy, “Modeling of graded-index channel waveguides using nonuniform finite difference method,” J. Lightwave Technol. 7, 1581–1589 (1989).
  10. I. Garcés, F. Villuendas, J. A. Vallés, C. Domínguez, and M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
  11. C. D. Poweleit, D. H. Naghski, S. M. Lindsay, J. T. Boyd, and H. E. Jackson, “Near field scanning optical microscopy measurements of optical intensity distributions in semiconductor channel waveguides,” Appl. Phys. Lett. 69, 3471–3473 (1996).
  12. B. P. Pal, “Guided-wave optics on silicon: physics, technology and status,” Prog. Opt. 32, 1–59 (1994).
  13. L. M. Lechuga, A. T. M. Lenferink, R. P. H. Kooyman, and J. Greeve, “Feasibility of evanescent wave interferometer immunosensors for direct detection of pesticides: chemical aspects,” Sensors Actuat. B 24–25, 762–765 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited