OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 12 — Dec. 1, 2000
  • pp: 2249–2259

Analysis of mode scattering from an abruptly ended dielectric slab waveguide by an accelerated iteration technique

Ioannis G. Tigelis and Alexander B. Manenkov  »View Author Affiliations

JOSA A, Vol. 17, Issue 12, pp. 2249-2259 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new modification of the integral equation method using an iteration technique with “accelerating” parameters is presented to solve the problem of guided-mode scattering from an abruptly ended asymmetrical slab waveguide. The optimal choice of the parameters is shown to be closely connected with the variational principle. The electric-field distribution at the terminal plane, the reflection coefficient of the guided mode, and the far-field radiation pattern are computed. Numerical results are presented for several cases of abruptly ended waveguides, including the systems with constant and variable profiles of the refractive indices. The phenomenon of the radiation pattern rotation is examined in detail.

© 2000 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(120.5700) Instrumentation, measurement, and metrology : Reflection
(120.5710) Instrumentation, measurement, and metrology : Refraction
(230.7370) Optical devices : Waveguides

Original Manuscript: March 31, 2000
Revised Manuscript: July 5, 2000
Manuscript Accepted: June 15, 2000
Published: December 1, 2000

Ioannis G. Tigelis and Alexander B. Manenkov, "Analysis of mode scattering from an abruptly ended dielectric slab waveguide by an accelerated iteration technique," J. Opt. Soc. Am. A 17, 2249-2259 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Angulo, “Diffraction of surface waves by a semi-infinite dielectric slab,” IRE Trans. Antennas Propag. AP-5, 100–109 (1957). [CrossRef]
  2. T. Ikegami, “Reflectivity of mode at facet and oscillation mode in double-heterostructure injection lasers,” IEEE J. Quantum Electron. QE-8, 470–476 (1972). [CrossRef]
  3. T. E. Rozzi, G. H. In’t Veld, “Variational treatment of the diffraction at the facet of d.h. lasers and of dielectric millimeter wave antennas,” IEEE Trans. Microwave Theory Tech. MTT-28, 61–73 (1980). [CrossRef]
  4. P. Gelin, M. Petenzi, J. Citerne, “Rigorous analysis of the scattering of surface waves in an abruptly ended slab dielectric waveguide,” IEEE Trans. Microwave Theory Tech. MTT-29, 107–114 (1981). [CrossRef]
  5. C. N. Capsalis, J. G. Fikioris, N. K. Uzunoglu, “Scattering from an abruptly terminated dielectric-slab waveguide,” J. Lightwave Technol. 3, 408–415 (1985). [CrossRef]
  6. C. Vassallo, “Reflectivity of multidielectric coatings deposited on the end facet of a weakly guiding dielectric slab waveguide,” J. Opt. Soc. Am. A 5, 1918–1928 (1988). [CrossRef]
  7. P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, M. J. Robertson, “Semiconductor laser facet reflectivities using free-space radiation modes,” IEE Proc. J. 140, 49–55 (1993).
  8. C. J. Smartt, T. M. Benson, P. C. Kendall, “Exact analysis of waveguide discontinuities: junctions and laser facets,” Electron. Lett. 29, 1352–1353 (1993). [CrossRef]
  9. G. Kweon, I. Park, J. Shim, “A computational method of determining reflectance at abrupt waveguide interfaces,” J. Lightwave Technol. 14, 2436–2443 (1996). [CrossRef]
  10. Y. P. Chiou, H. C. Chang, “Analysis of optical wave-guide discontinuities using Padé approximants,” IEEE Photonics Technol. Lett. 9, 964–966 (1997). [CrossRef]
  11. I. G. Tigelis, A. B. Manenkov, “Scattering from an abruptly terminated asymmetrical slab waveguide,” J. Opt. Soc. Am. A 16, 523–532 (1999). [CrossRef]
  12. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981), Chap. 4.
  13. M. S. Sodha, A. K. Ghatak, Inhomogeneous Optical Waveguides (Plenum, New York, 1977).
  14. L. Lewin, Theory of Waveguides (Newness-Butterworths, London, 1975), Chap. 9.
  15. A. B. Manenkov, “Propagation of a surface wave along a dielectric waveguide with an abrupt change of parameters. II: Solution by variational method,” Radiophys. Quantum Electron. 25, 1050–1055 (1982). [CrossRef]
  16. A. B. Manenkov, “Reflection of the surface mode from an abruptly ended W-fibre,” IEE Proc. J 139, 101–104 (1992).
  17. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, London, 1991), Chap. 1.
  18. F. G. Tricomi, Integral Equations (Interscience, New York, 1957).
  19. G. Latsas, A. B. Manenkov, I. G. Tigelis, E. Sarri, “Reflectivity properties of an abruptly ended asymmetrical slab waveguide for the case of transverse magnetic modes,” J. Opt. Soc. Am. A 17, 162–172 (2000). [CrossRef]
  20. A. D. Vasil’ev, A. B. Manenkov, “Diffraction of the sur-face wave at the end of the dielectric tube,” Radiophys. Quantum Electron. 30, 320–326 (1987). [CrossRef]
  21. A. B. Manenkov, “Eigenmodes expansion in lossy open waveguides (fibres),” Opt. Quantum Electron. 23, 621–632 (1991). [CrossRef]
  22. A. B. Manenkov, “Radiation modes of a fibre. Part I: construction and properties,” IEE Proc. J. 141, 287–295 (1994).
  23. J. Buus, “Analytic approximation for the reflectivity of DH lasers,” IEEE J. Quantum Electron. QE-17, 2256–2257 (1981). [CrossRef]
  24. M. Reed, T. M. Benson, P. C. Kendall, P. Sewell, “Antireflection-coated angled facet design,” IEE Proc. J. 143, 214–220 (1996).
  25. R. E. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961), Chap. 8.
  26. A. B. Manenkov, “Reflection of the surface mode from an abruptly ended dielectric waveguide,” IEE Proc. J. 139, 194–200 (1992).
  27. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116–130 (1962). [CrossRef] [PubMed]
  28. F. K. Reinhart, I. Hayashi, M. B. Panish, “Mode reflectivity and waveguide properties of double-heterostructure injection lasers,” J. Appl. Phys. 42, 4466–4479 (1971). [CrossRef]
  29. J. K. Butler, J. Zoroofchi, “Radiation fields of GaAs-(AlGa)As injection lasers,” IEEE. J. Quantum Electron. QE-10, 809–815 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited