OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 12 — Dec. 1, 2000
  • pp: 2319–2323

Wigner distribution and fractional Fourier transform for two-dimensional symmetric optical beams

Tatiana Alieva and Martin J. Bastiaans  »View Author Affiliations


JOSA A, Vol. 17, Issue 12, pp. 2319-2323 (2000)
http://dx.doi.org/10.1364/JOSAA.17.002319


View Full Text Article

Acrobat PDF (133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A useful relationship between the fractional Fourier transform power spectra of a two-dimensional symmetric optical beam, on the one hand, and its Wigner distribution, on the other, is established. This relationship allows a significant simplification of the standard procedure for the reconstruction of the Wigner distribution from the field intensity distributions in the fractional Fourier domains. The Wigner distribution of a symmetric optical beam is analyzed, both in the coherent and in the partially coherent case.

© 2000 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.2590) Fourier optics and signal processing : ABCD transforms

Citation
Tatiana Alieva and Martin J. Bastiaans, "Wigner distribution and fractional Fourier transform for two-dimensional symmetric optical beams," J. Opt. Soc. Am. A 17, 2319-2323 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-12-2319


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932).
  2. M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978).
  3. W. Mecklenbräuker and F. Hlawatsch, eds., The Wigner Distribution: Theory and Applications in Signal Processing (Elsevier, Amsterdam, 1997).
  4. M. G. Raymer, M. Beck, and D. F. McAlister, “Complexwave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).
  5. D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).
  6. Y. B. Karasik, “Expression of the kernel of a fractional Fourier transform in elementary functions,” Opt. Lett. 19, 769–770 (1994).
  7. A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters,” Appl. Opt. 37, 2130–2141 (1998).
  8. A. Sahin, M. A. Kutay, and H. M. Ozaktas, “Nonseparable two-dimensional fractional Fourier transform,” Appl. Opt. 37, 5444–5453 (1998).
  9. A. W. Lohmann, “Image rotation, Wigner rotation and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993).
  10. M. J. Bastiaans and P. G. J. van de Mortel, “Wigner distribution function of a circular aperture,” J. Opt. Soc. Am. A 13, 1698–1703 (1996).
  11. L. Yu, Y. Lu, X. Zeng, M. Huang, M. Chen, W. Huang, and Z. Zhu, “Deriving the integral representation of a fractional Hankel transform from a fractional Fourier transform,” Opt. Lett. 23, 1158–1160 (1998).
  12. E. Wolf, “New theory of partial coherence in the space-frequency domain. I. Spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982).
  13. F. Gori, M. Santarsiero, and G. Guattari, “Coherence and the spatial distribution of intensity,” J. Opt. Soc. Am. A 10, 673–679 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited