Universal invariants of quantum-mechanical and optical systems
JOSA A, Vol. 17, Issue 12, pp. 2403-2410 (2000)
http://dx.doi.org/10.1364/JOSAA.17.002403
Acrobat PDF (181 KB)
Abstract
We give a brief review of the theory of quantum and optical universal invariants, i.e., certain combinations of the second- and higher-order moments (variances) of quantum-mechanical operators or the transverse phase-space coordinates of optical paraxial beams that are preserved in time (or along the axis of the beam) independently of the concrete form of the coefficients of the Hamiltonian or the parameters of the optical system, provided that the effective Hamiltonian is either a generic quadratic form of the generalized coordinate-momenta operators or a linear combination of generators of certain finite-dimensional algebras. Using the phase-space representation of quantum mechanics (paraxial optics) in terms of the Wigner function, we elucidate the relation between the quantum invariants and the classical universal integral invariants of Poincaré and Cartan. The specific features of the Gaussian beams are discussed as examples.
© 2000 Optical Society of America
OCIS Codes
(000.1600) General : Classical and quantum physics
(030.6600) Coherence and statistical optics : Statistical optics
(060.2310) Fiber optics and optical communications : Fiber optics
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(350.5500) Other areas of optics : Propagation
Citation
Victor V. Dodonov and Olga V. Man’ko, "Universal invariants of quantum-mechanical and optical systems," J. Opt. Soc. Am. A 17, 2403-2410 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-12-2403
Sort: Year | Journal | Reset
References
- M. A. Leontovich and V. A. Fock, “Solution of the problem of propagation of electromagnetic waves along the earth’s surface by the method of parabolic equation,” Zh. Eksp. Teor. Fiz. 16, 557–573 (1946).
- J. A. Arnaud, Beam and Fiber Optics (Academic, New York, 1976).
- K. B. Wolf, “On time-dependent quadratic Hamiltonians,” SIAM J. Appl. Math. 40, 419–431 (1981).
- V. I. Man’ko, “Invariants and coherent states in fiber optics,” in Lie Methods in Optics, J. Sánchez Mondragón and K. B. Wolf, eds., Vol. 250 of Lecture Notes in Physics (Springer-Verlag, Berlin, 1986), pp. 193–207.
- V. V. Dodonov and V. I. Man’ko, Invariants and the Evolution of Nonstationary Quantum Systems, in Proceedings of the Lebedev Physics Institute, M. A. Markov, ed. (Nova Science, Commack, N.Y., 1989), Vol. 183.
- V. I. Man’ko and K. B. Wolf, “Symplectic and Euclidean groups of transformations in optics,” in Theory of the Interaction of Multilevel Systems with Quantized Fields, V. I. Man’ko and M. A. Markov, eds., Proc. P.N. Lebedev Phys. Inst. 209, 163–189 (1996).
- R. Simon and K. B. Wolf, “Structure of the set of paraxial optical systems,” J. Opt. Soc. Am. A 17, 342–355 (2000).
- H. Bacry and M. Cadilhac, “Metaplectic group and Fourier optics,” Phys. Rev. A 23, 2533–2536 (1981).
- M. García-Bullé, W. Lassner, and K. B. Wolf, “The metaplectic group within the Heisenberg–Weyl ring,” J. Math. Phys. 27, 29–36 (1986).
- L. H. Yeh and Y. S. Kim, “Correspondence between the classical and quantum canonical transformation groups from an operator formulation of the Wigner function,” Found. Phys. 24, 873–884 (1994).
- K. Sundar, N. Mukunda, and R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12, 560–569 (1995).
- V. V. Dodonov and V. I. Man’ko, “Universal invariants of quantum systems and generalized uncertainty relations,” in Group Theoretical Methods in Physics, Proceedings of the Second International Seminar, Zvenigorod, Russia, November 24–26, 1982, M. A. Markov, V. I. Man’ko, and A. E. Shabad, eds. (Nauka, Moscow, 1983), Vol. 2, pp. 11–33 (in Russian) [(Harwood Academic, London, 1985), Vol. 1, pp. 591–612 (in English)].
- E. S. Hernández and B. Remaud, “Quantal fluctuations and invariant operators for a general time-dependent harmonic oscillator,” Phys. Lett. A 75, 269–272 (1980).
- B. Remaud and E. S. Hernández, “Constants of motion and non-stationary wave functions for the damped time-dependent harmonic oscillator,” Physica A 103, 35–54 (1980).
- R. E. Turner and R. F. Snider, “A phase space moment method for classical and quantum dynamics,” Can. J. Phys. 59, 457–470 (1981).
- V. V. Dodonov and V. I. Man’ko, “Density matrices and Wigner functions of quasiclassical quantum systems,” in Group Theory, Gravitation and Elementary Particle Physics, A. A. Komar, ed., Proc. P.N. Lebedev Phys. Inst. 167, 7–101 (1987).
- R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Generalized rays in first-order optics: transformation properties of Gaussian Schell-model fields,” Phys. Rev. A 29, 3273–3279 (1984).
- R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985).
- V. V. Dodonov and O. V. Man’ko, “Universal invariants of paraxial optical beams,” in Group Theoretical Methods in Physics, Proceedings of the Third Seminar, Yurmala, Latvia, May 1985, V. V. Dodonov, M. A. Markov, and V. I. Man’ko, eds. (VNU Science, Utrecht, The Netherlands, 1986), Vol. 2, pp. 523–530.
- V. V. Dodonov and O. V. Man’ko, “Universal invariants of the paraxial optical beams,” in Computing Optics, Fundamentals, E. P. Velikhov and A. M. Prokhorov, eds. (International Center of Scientifical and Technical Information, Moscow, 1987), pp. 84–90.
- R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and a generalized ABCD-law,” Opt. Commun. 65, 322–328 (1988).
- M. J. Bastiaans, “Second-order moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 88, 163–168 (1991).
- M. Kauderer, “First-order sources in first-order systems: second-order correlations,” Appl. Opt. 30, 1025–1035 (1991).
- J. Serna, R. Martínez-Herrero, and P. M. Mejías, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991).
- P. A. Belanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16, 196–198 (1991).
- G. Dattoli, C. Mari, M. Richetta, and A. Torre, “On the generalized Twiss parameters and Courant–Snyder invariant in classical and quantum optics,” Nuovo Cimento 107, 269–287 (1992).
- M. J. Bastiaans, “ABCD law for partially coherent Gaussian light, propagating through first-order optical systems,” Opt. Quantum Electron. 24, S1011–S1019 (1992).
- R. Martínez-Herrero, P. M. Mejías, M. Sanchez, and J. L. H. Neira, “Third- and fourth-order parametric characterization of partially coherent beams propagating through ABCD optical systems,” Opt. Quantum Electron. 24, S1021–S1026 (1992).
- H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, S1027–S1049 (1992).
- D. Onciul, “Invariance properties of general astigmatic beams through first-order optical systems,” J. Opt. Soc. Am. A 10, 295–298 (1993).
- Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of pulsed nonideal beams in a four-dimensional domain,” Opt. Lett. 18, 669–671 (1993).
- G. Nemes and A. E. Siegman, “Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics,” J. Opt. Soc. Am. A 11, 2257–2264 (1994).
- D. Dragoman, “Higher-order moments of the Wigner distribution function in first-order optical systems,” J. Opt. Soc. Am. A 11, 2643–2646 (1994).
- D. Dragoman, “Wigner distribution function for Gaussian–Schell beams in complex matrix optical systems,” Appl. Opt. 34, 3352–3357 (1995).
- R. Martínez-Herrero and P. M. Mejías, “On the fourth-order spatial characterization of laser beams: new invariant parameter through ABCD systems,” Opt. Commun. 140, 57–60 (1997).
- J. Yang and D. Fan, “Intensity-moments characterization of general pulsed paraxial beams with the Wigner distribution function,” J. Opt. Soc. Am. A 16, 2488–2493 (1999).
- M. W. Sasnett, “Propagation of multimode laser beams—the M^{2} factor,” in Physics and Technology of Laser Resonators, D. R. Hall and P. E. Jackson, eds. (Hilger, Bristol, UK, 1989), pp. 132–142.
- A. E. Siegman, “Defining the effective radius of curvature for a nonideal optical beam,” IEEE J. Quantum Electron. 27, 1146–1148 (1991).
- A. J. Dragt, R. L. Gluckstern, F. Neri, and G. Rangarajan, “Theory of emittance invariance,” in Frontiers of Particle Beams: Observation, Diagnosis and Correction: Proceedings of a Topical Course, Held by the Joint US–CERN School on Particle Accelerators at Anacapri, Isola di Capri, Italy, October 20–26, 1988, M. Month and S. Turner, eds. (Springer-Verlag, Berlin, 1989), pp. 94–121.
- D. D. Holm, W. P. Lysenko, and J. C. Scovel, “Moment invariants for the Vlasov equation,” J. Math. Phys. 31, 1610–1615 (1990).
- F. Neri and G. Rangarajan, “Kinematic moment invariants for linear Hamiltonian systems,” Phys. Rev. Lett. 64, 1073–1075 (1990).
- A. J. Dragt, F. Neri, and G. Rangarajan, “General moment invariants for linear Hamiltonian systems,” Phys. Rev. A 45, 2572–2585 (1992).
- T. F. Johnston, M. W. Sasnett, J. L. Doumont, and A. E. Siegman, “Laser-beam quality versus aperture size in a cw argon-ion laser,” Opt. Lett. 17, 198–200 (1992).
- M. A. Porras, “Experimental investigation on aperture-diffracted laser beam characterization,” Opt. Commun. 109, 5–9 (1994).
- H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron. 32, 400–407 (1996).
- F. Encinas-Sanz, J. Serna, C. Martínez, R. Martínez-Herrero, and P. M. Mejías, “Time-varying beam quality factor and mode evolution in TEA CO_{2} laser pulses,” IEEE J. Quantum Electron. 34, 1835–1838 (1998).
- N. M. Atakishiyev, S. M. Chumakov, A. L. Rivera, and K. B. Wolf, “On the phase space description of quantum nonlinear dynamics,” Phys. Lett. A 215, 128–134 (1996).
- R. Fedele and G. Miele, “A thermal-wave model for relativistic-charged-particle beam propagation,” Nuovo Cimento D 13, 1527–1544 (1991).
- G. Dattoli, L. Giannessi, C. Mari, M. Richetta, and A. Torre, “Formal quantum theory of electronic rays,” Opt. Commun. 87, 175–180 (1992).
- R. Fedele and V. I. Man’ko, “Quantumlike corrections and semiclassical description of charged-particle beam transport,” Phys. Rev. E 58, 992–1001 (1998).
- R. Fedele, M. A. Man’ko, and V. I. Man’ko, “Wave-optics applications in charged-particle-beam transport,” J. Russ. Laser Res. 21, 1–33 (2000).
- J. Paye and A. Migus, “Space–time Wigner functions and their application to the analysis of a pulse shaper,” J. Opt. Soc. Am. B 12, 1480–1490 (1995).
- K. B. Wolf, “Wigner distribution function for paraxial polychromatic optics,” Opt. Commun. 132, 343–352 (1996).
- Q. Cao and X. M. Deng, “Spatial parametric characterization of general polychromatic light beams,” Opt. Commun. 142, 135–145 (1997).
- L. C. Lee, “Wave propagation in a random medium: a complete set of the moment equations with different wave numbers,” J. Math. Phys. 15, 1431–1435 (1974).
- S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics (Nauka, Moscow, 1978).
- E. Collett and E. Wolf, “Beams generated by Gaussian quasi-homogeneous sources,” Opt. Commun. 32, 27–31 (1980).
- F. Gantmacher, Lectures in Analytical Mechanics (Mir, Moscow, 1970).
- V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978).
- R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian–Wigner distributions in quantum mechanics and optics,” Phys. Rev. A 36, 3868–3880 (1987).
- R. Simon and N. Mukunda, “Gaussian Schell-model beams and generalized shape invariance,” J. Opt. Soc. Am. A 16, 2465–2475 (1999).
- H. P. Robertson, “An indeterminacy relation for several observables and its classical interpretation,” Phys. Rev. 46, 794–801 (1934).
- E. D. Courant and H. S. Snyder, “Theory of alternating-gradient synchrotron,” Ann. Phys. (N.Y.) 3, 1–48 (1958).
- H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458–1473 (1969).
- F. R. Gantmakher, The Theory of Matrices (Nauka, Moscow, 1966).
- S. Ramee and R. Simon, “Effect of holes and vortices on beam quality,” J. Opt. Soc. Am. A 17, 84–94 (2000).
- V. V. Dodonov and V. I. Man’ko, “Phase space eigenfunctions of multidimensional quadratic Hamiltonians,” Physica A 137, 306–316 (1986).
- V. V. Dodonov and O. V. Man’ko, “Universal invariants in quantum mechanics and physics of optical and particle beams,” J. Russ. Laser Res. 21, 438–464 (2000).
- V. I. Man’ko and K. B. Wolf, “The influence of aberrations on the Gaussian beam propagation,” in Classical and Quantum Effects in Electrodynamics, A. A. Komar, ed., Proc. P.N. Lebedev Phys. Inst. 176, 127–168 (1988).
- A. E. Siegman, “Analysis of laser beam quality degradation caused by quartic phase aberrations,” Appl. Opt. 32, 5893–5901 (1993).
- V. V. Dodonov and V. I. Man’ko, “Integrals of motion of pure and mixed quantum systems,” Physica A 94, 403–412 (1978).
- S. Chountasis and A. Vourdas, “The extended phase-space: a formalism for the study of quantum noise and quantum correlations,” J. Phys. A 32, 6949–6961 (1999).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.