## Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems

JOSA A, Vol. 17, Issue 12, pp. 2475-2480 (2000)

http://dx.doi.org/10.1364/JOSAA.17.002475

Acrobat PDF (161 KB)

### Abstract

A measure for the twist of Gaussian light is expressed in terms of the second-order moments of the Wigner distribution function. The propagation law for these second-order moments between the input plane and the output plane of a first-order optical system is used to express the twist in one plane in terms of moments in the other plane. Although in general the twist in one plane is determined not only by the twist in the other plane but also by other combinations of the moments, several special cases exist for which a direct relationship between the twists can be formulated. Three such cases, for which zero twist is preserved, are considered: (i) propagation between conjugate planes, (ii) adaptation of the signal to the system, and (iii) the case of symplectic Gaussian light.

© 2000 Optical Society of America

**OCIS Codes**

(030.5630) Coherence and statistical optics : Radiometry

(070.2580) Fourier optics and signal processing : Paraxial wave optics

(080.2730) Geometric optics : Matrix methods in paraxial optics

**Citation**

Martin J. Bastiaans, "Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems," J. Opt. Soc. Am. A **17**, 2475-2480 (2000)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-12-2475

Sort: Year | Journal | Reset

### References

- R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993).
- R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10, 2008–2016 (1993).
- K. Sundar, R. Simon, and N. Mukunda, “Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10, 2017–2023 (1993).
- A. T. Friberg, B. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994).
- D. Ambrosini, V. Bagini, F. Gori, and M. Santarsiero, “Twisted Gaussian Schell-model beams: a superposition model,” J. Mod. Opt. 41, 1391–1399 (1994).
- R. Simon, A. T. Friberg, and E. Wolf, “Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems,” Pure Appl. Opt. 5, 331–343 (1996).
- R. Simon and N. Mukunda, “Twist phase in Gaussian-beam optics,” J. Opt. Soc. Am. A 15, 2373–2382 (1998).
- M. J. Bastiaans, “On the propagation of the twist of Gaussian light in first-order optical systems,” in Optics and Optoelectronics, Theory, Devices and Applications, O. P. Nijhawan, A. K. Gupta, A. K. Musla, and K. Singh, eds. (Narosa, New Delhi, 1998), pp. 121–125.
- M. J. Bastiaans, “Zero twist of Gaussian light in first-order optical systems,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, and T. Asakura, eds., Proc. SPIE 3749, 112–113 (1999).
- A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, New York, 1968).
- L. Mandel and E. Wolf, “Spectral coherence and the concept of cross-spectral purity,” J. Opt. Soc. Am. 66, 529–535 (1976).
- M. J. Bastiaans, “A frequency-domain treatment of partial coherence,” Opt. Acta 24, 261–274 (1977).
- M. J. Bastiaans, “Wigner distribution function applied to partially coherent light,” in Proceedings of the Workshop on Laser Beam Characterization, P. M. Mejías, H. Weber, R. Martínez-Herrero, and A. González-Ureña, eds. (Sociedad Española de Optica, Madrid, 1993), pp. 65–87.
- A. C. Schell, “A technique for the determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag. AP-15, 187–188 (1967).
- F. Gori, “Collett–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980).
- E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932).
- A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256–1259 (1968).
- M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227–1238 (1986).
- R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985).
- M. J. Bastiaans, “ABCD law for partially coherent Gaussian light, propagating through first-order optical systems,” Opt. Quantum Electron. 24, 1011–1019 (1992).
- R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian–Wigner distributions in quantum mechanics and optics,” Phys. Rev. A 36, 3868–3880 (1987).
- R. Simon, N. Mukunda, and B. Dutta, “Quantum-noise matrix for multimode systems—U(n) invariance, squeezing, and normal forms,” Phys. Rev. A 49, 1567–1583 (1994).
- R. K. Luneburg, Mathematical Theory of Optics (U. California Press, Berkeley, Calif., 1966).
- G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE 60, 1022–1035 (1972).
- M. J. Bastiaans, “Wigner distribution function and its applications to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979).
- R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and a generalized ABCD-law,” Opt. Commun. 65, 322–328 (1988).
- M. J. Bastiaans, “Second-order moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 88, 163–168 (1991).
- J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.