OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 12 — Dec. 1, 2000
  • pp: 2529–2535

Toward a tomographic picture of a Bose–Einstein condensate

Stefano Mancini, Mauro Fortunato, Paolo Tombesi, and Giacomo Mauro D’Ariano  »View Author Affiliations

JOSA A, Vol. 17, Issue 12, pp. 2529-2535 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (733 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The possibilities of applying tomographic techniques to a Bose–Einstein condensate to reconstruct its ground state are investigated by means of numerical simulations. Two situations for which the density-matrix elements can be retrieved from atom counting probabilities are considered. The methods presented here allow one to distinguish among various possible quantum states.

© 2000 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics

Original Manuscript: March 9, 2000
Revised Manuscript: September 12, 2000
Manuscript Accepted: September 12, 2000
Published: December 1, 2000

Stefano Mancini, Mauro Fortunato, Paolo Tombesi, and Giacomo Mauro D’Ariano, "Toward a tomographic picture of a Bose–Einstein condensate," J. Opt. Soc. Am. A 17, 2529-2535 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. F. Walls, G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).
  2. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995); K. B. Davies, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995); C. C. Bradley, C. A. Sackett, J. J. Tollett, R. G. Hulet, “Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions,” Phys. Rev. Lett. 75, 1687–1690 (1995). [CrossRef] [PubMed]
  3. M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, W. Ketterle, “Observation of interference between two Bose–Einstein condensates,” Science 275, 637–641 (1997). [CrossRef] [PubMed]
  4. W. Ketterle, H. J. Miesner, “Coherence properties of Bose–Einstein condensates and atom lasers,” Phys. Rev. A 56, 3291–3293 (1997). [CrossRef]
  5. M. Lewenstein, L. You, “Quantum phase diffusion of a Bose–Einstein condensate,” Phys. Rev. Lett. 77, 3489–3493 (1996); M. J. Steel, M. J. Collett, “Quantum state of two trapped Bose–Einstein condensates with a Josephson coupling,” Phys. Rev. A 57, 2920–2930 (1998). [CrossRef] [PubMed]
  6. H. Zeng, W. Zhang, F. Lin, “Nonclassical Bose–Einstein condensate,” Phys. Rev. A 52, 2155–2160 (1995). [CrossRef] [PubMed]
  7. J. Ruostekoski, J. Javanainen, “Quantum field theory of cooperative atom response: low light intensity,” Phys. Rev. A 55, 513–526 (1997); E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, C. E. Wieman, “Coherence, correlations and collisions: what one learns about Bose–Einstein condensates from their decay,” Phys. Rev. Lett. 79, 337–340 (1997). [CrossRef]
  8. See, e.g., U. Leonhardt, Measuring the Quantum State of Light (Cambridge U. Press, Cambridge, UK, 1997); J. Mod. Opt. 44, 11/12, special issue on quantum state preparation and measurement.
  9. S. Mancini, P. Tombesi, “Quantum state reconstruction of a Bose–Einstein condensate,” Europhys. Lett. 40, 351–355 (1997). [CrossRef]
  10. E. L. Bolda, S. M. Tan, D. F. Walls, “Reconstruction of the joint state of a two-mode Bose–Einstein condensate,” Phys. Rev. Lett. 79, 4719–4723 (1997); R. Walser, “Measuring the state of a bosonic two-mode quantum field,” Phys. Rev. Lett. 79, 4724–4727 (1997). [CrossRef]
  11. E. L. Bolda, S. M. Tan, D. F. Walls, “Measuring the quantum state of a Bose–Einstein condensate,” Phys. Rev. A 57, 4686–4694 (1998). [CrossRef]
  12. D. T. Smithey, M. Beck, M. G. Raymer, A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993). [CrossRef] [PubMed]
  13. R. Spreeuw, T. Pfau, U. Janicke, M. Wilkens, “Laser-like scheme for atomic matter waves,” Europhys. Lett. 32, 469–474 (1995); M. Holland, K. Burnett, C. Gardiner, J. I. Cirac, P. Zoller, “Theory of an atom laser,” Phys. Rev. A 54, 1757–1760 (1996); H. Wiseman, A. M. Martins, D. F. Walls, “An atom laser based on evaporative cooling,” Quantum Semiclassic. Opt. 8, 737–753 (1996); H. Steck, M. Naraschewski, H. Wallis, “Output of a pulsed atom laser,” Phys. Rev. Lett. 80, 1–5 (1998); J. Schneider, A. Schenzle, “Output from an atom laser: theory vs. experiment,” Appl. Phys. B 69, 353–356 (1999); I. Bloch, T. W. Hänsch, T. Esslinger, “Atom laser with a cw output coupler,” Phys. Rev. Lett. 82, 3008–3011 (1999). [CrossRef]
  14. J. A. Dunningham, K. Burnett, “Phase standard for Bose–Einstein condensates,” Phys. Rev. Lett. 82, 3729–3733 (1999). [CrossRef]
  15. S. Mancini, V. I. Man’ko, P. Tombesi, “Different realizations of the tomography principle in quantum state measurement,” J. Mod. Opt. 44, 2281–2292 (1997). [CrossRef]
  16. G. M. D’Ariano, “Group theoretical quantum tomography,” Acta Phys. Slovaca 49, 513–522 (1999).
  17. E. P. Wigner, Perspectives in Quantum Theory, W. Yourgrau, A. van der Merwe, eds. (Dover, New York, 1979).
  18. P. Berman, ed., Atom Interferometry (Academic, New York, 1997); M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, W. Ketterle, “Output coupler for Bose–Einstein condensed atoms,” Phys. Rev. Lett. 78, 582–585 (1997); H. Hinderthur, A. Pautz, F. Ruschewitz, K. Sengstock, W. Ertmer, “Atomic interferometry with polarizing beam splitters,” Phys. Rev. A 57, 4730–4735 (1998). [CrossRef]
  19. L. C. Biedenharn, H. Van Dam, eds., Quantum Theory of Angular Momentum (Academic, New York, 1965).
  20. V. V. Dodonov, V. I. Man’ko, “Positive distribution description for spin states,” Phys. Lett. A 229, 335–339 (1997). [CrossRef]
  21. V. I. Man’ko, O. V. Man’ko, “Spin state tomography,” Zh. Eksp. Teor. Fiz. 112, 796–800 (1997). [JETP 85, 430–434 (1997)]. [CrossRef]
  22. S. Wallentowitz, W. Vogel, “Unbalanced homodyning for quantum state measurements,” Phys. Rev. A 53, 4528–4533 (1996); K. Banaszek, K. Wodkiewicz, “Direct probing of quantum phase space by photon counting,” Phys. Rev. Lett. 76, 4344–4347 (1996); S. Mancini, P. Tombesi, V. I. Man’ko, “Density matrix from photon number tomography,” Europhys. Lett. 37, 79–83 (1997). [CrossRef] [PubMed]
  23. T. Opatrny, D. G. Welsch, “Density matrix reconstruction by unbalanced homodyning,” Phys. Rev. A 55, 1462–1465 (1997). [CrossRef]
  24. See, e.g., D. J. S. Robinson, A Course in Linear Algebra with Applications (World Scientific, Singapore, 1991); W. T. Vetterling, S. A. Teukolsky, W. H. Press, B. P. Flannery, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1985).
  25. M. O. Scully, W. E. Lamb, “Quantum theory of optical maser. III. Theory of photoelectron counting statistics,” Phys. Rev. 179, 368–374 (1969). [CrossRef]
  26. K. Vogel, W. Schleich, “More on interference in phase space,” in Fundamental Systems in Quantum Optics, J. Dalibard, J.-M. Raimond, J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1992), pp. 713–765.
  27. M. Hillery, R. F. O’Connell, M. O. Scully, E. P. Wigner, “Distribution functions in physics: fundamentals,” Phys. Rep. 106, 121–167 (1986). The Wigner function is a more refined picture of the quantum state in phase space and is particularly suited to display quantum characters of the state. In simple words, the Q function is a smoothed version of the Wigner function. [CrossRef]
  28. F. T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, “Atomic coherent states in quantum optics,” Phys. Rev. A 6, 2211–2237 (1972); G. S. Agarwal, “Relation between atomic coherent representation, state multipoles and generalized phase space distributions,” Phys. Rev. A 24, 2889–2896 (1981). [CrossRef]
  29. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, New York, 1975); K. Huang, Statistical Mechanics, 2nd ed. (Wiley, New York, 1987).
  30. G. M. D’Ariano, U. Leonhardt, H. Paul, “Homodyne detection of the density matrix of the radiation field,” Phys. Rev. A 52, R1801–R1804 (1995). [CrossRef] [PubMed]
  31. P. Braun-Munzinger, H. J. Specht, R. Stock, H. Stocker, eds., Quark Matter, Nucl. Phys. A610, 1c–565c (1996); T. Csorgo, P. Levai, J. Zimanyi, eds., Strangeness in Hadronic Matter, Heavy Ion Phys.4, 1–464 (1996); S. Pratt, “Pion lasers from high-energy collisions,” Phys. Lett. B 301, 159–164 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited