OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 232–243

Chromatic contrast sensitivity: the role of absolute threshold and gain constant in differences between the fovea and the periphery

Pauline M. Pearson and William H. Swanson  »View Author Affiliations


JOSA A, Vol. 17, Issue 2, pp. 232-243 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000232


View Full Text Article

Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A model of foveal achromatic and chromatic sensitivity [Vision Res. 36, 1597 (1996)] was extended to the peripheral visual field. Threshold-versus-illuminance functions were analyzed to determine effects of eccentricity on absolute thresholds and gain constants of chromatic and luminance mechanisms. The resulting peripheral model successfully predicted peripheral contrast sensitivity as a function of wavelength, for both white and 500-nm backgrounds. We conclude that the short-wavelength-sensitive cone opponent mechanism may mediate thresholds in Sloan’s notch in the normal periphery and that interpretation of reduced chromatic sensitivity in the periphery requires an explicit model of how eccentricity affects both the gain constant and the absolute threshold.

© 2000 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment

Citation
Pauline M. Pearson and William H. Swanson, "Chromatic contrast sensitivity: the role of absolute threshold and gain constant in differences between the fovea and the periphery," J. Opt. Soc. Am. A 17, 232-243 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-2-232


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Miyahara, J. Pokorny, and V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers,” Vision Res. 36, 1597–1613 (1996).
  2. T. Yeh, J. Pokorny, and V. C. Smith, “S-cone discrimination sensitivity and performance on arrangement tests,” Doc. Ophthalmol. Proc. Series. 56, 293–302 (1993).
  3. V. Smith, J. Pokorny, and T. Yeh, “Pigment tests evaluated by a model of chromatic discrimination,” J. Opt. Soc. Am. A 10, 1773–1784 (1993).
  4. V. Smith, J. Pokorny, and T. Yeh, “The Farnsworth–Munsell 100-hue test in cone excitation space,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Boston, Mass., 1993), pp. 281–291.
  5. T. Yeh, J. Pokorny, and V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
  6. E. Miyahara, V. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
  7. C. Johnson, “Early losses of visual function in glaucoma,” Optom. Vision Sci. 72, 359–370 (1995).
  8. C. A. Johnson, A. J. Adams, E. J. Casson, and J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol. 111, 645–650 (1993).
  9. S. Alvarez, G. Pierce, A. Vingrys, S. Benes, P. Weber, and P. King-Smith, “Comparison of red–green, blue–yellow and achromatic losses in glaucoma,” Vision Res. 37, 2295–2301 (1997).
  10. P. A. Sample, M. E. Madrid, and R. N. Weinreb, “Evidence for a variety of functional defects in glaucoma-suspect eyes,” J. Glaucoma 3 (suppl. 1), S5–S18 (1994).
  11. P. A. Sample, G. A. Martinez, and R. N. Weinreb, “Color visual fields: a five-year prospective study in suspect eye and eyes with primary open angle glaucoma,” in Perimetry Update 1992/1993, R. P. Mills, ed. (Kugler, Amsterdam, 1993), pp. 473–476.
  12. G. Verriest and A. Uvijls, “Spectral increment thresholds on a white background in different age groups of normal subjects and in acquired ocular diseases,” Doc. Ophthalmol. 43, 217–248 (1977).
  13. J. Thornton and E. Pugh, “Relationship of opponent-colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision, J. D. Mollon and L. T. Sharpe, eds. (Academic, London, 1983), pp. 361–373.
  14. J. E. Thornton and E. N. J. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
  15. H. G. Sperling and R. S. Harwerth, “Red–green cone interaction in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
  16. M. Kalloniatis and R. Harwerth, “Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
  17. M. Kalloniatis and R. Harwerth, “Effects of chromatic adaptation on opponent interactions in monkey increment-threshold spectral-sensitivity functions,” J. Opt. Soc. Am. A 8, 1818–1831 (1991).
  18. R. M. Boynton and N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
  19. T. Yeh, V. C. Smith, and J. Pokorny, “The effect of background luminance on cone sensitivity functions,” IOVS 30, 2077–2086 (1989).
  20. D. Calkins, J. Thornton, and E. Pugh, “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349–2367 (1992).
  21. D. Foster and R. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787–797 (1983).
  22. M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
  23. A. Nagy and S. Wolf, “Red–green color discrimination in peripheral vision,” Vision Res. 33, 235–242 (1993).
  24. S. Anderson, K. Mullen, and R. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47–64 (1994).
  25. M. Johnson, “Color vision in the peripheral retina,” Am. J. Optom. Physiol. Opt. 63, 97–103 (1986).
  26. J. G. Robson and N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
  27. C. Noorlander, J. J. Koenderink, R. J. den Ouden, and B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
  28. J. Rovamo, V. Virsu, and R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
  29. A. B. Watson, “Estimation of local spatial scale,” J. Opt. Soc. Am. A 4, 1579–1582 (1987).
  30. J. Pointer and R. Hess, “The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range,” Vision Res. 29, 1133–1151 (1989).
  31. K. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
  32. K. Mullen and F. Kingdom, “Losses in peripheral colour sensitivity predicted from ‘hit and miss’ post-receptoral cone connections,” Vision Res. 36, 1995–2000 (1996).
  33. C. Stromeyer, J. Lee, and R. Eskew, “Peripheral sensitivity for flashes: a post-receptoral red–green aymmetry,” Vision Res. 32, 1865–1873 (1992).
  34. J. v. Esch, E. Koldenhof, A. van Doorn, and J. Koenderink, “Spectral sensitivity and wavelength discrimination of the human peripheral visual field,” J. Opt. Soc. Am. A 1, 443–450 (1984).
  35. R. S. Harwerth, E. L. Smith, and L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).
  36. V. C. Greenstein and D. C. Hood, “The effects of light adaptation on L-cone sensitivity in retinal disease,” Clin. Vision Sci. 7, 1–7 (1992).
  37. P. E. King-Smith and D. Carden, “Luminance and opponent color contributions to visual detection and adaptation and to temporal spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
  38. T. Ueno, J. Pokorny, and V. C. Smith, “Reaction times to chromatic stimuli,” Vision Res. 25, 1623–1627 (1985).
  39. H. Levitt, “Transformed up–down methods in psychophysics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
  40. W. H. Swanson and E. E. Birch, “Extracting thresholds from noisy psychophysical data,” Percept. Psychophy. 51, 409–422 (1992).
  41. Y. LeGrand, Light, Color and Vision (Chapman & Hall, London, 1968).
  42. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
  43. D. Judd, Colorimetry and Artificial Daylight, Report of the U.S. Secretariat Committee on Colorimetry and Artificial Daylight, Proceedings of the Twelfth Session of the CIE, Stockholm, 1951, pp. 1–60.
  44. V. Smith and J. Pokorny, “The design and use of a cone chromaticity space: a tutorial,” Color Res. Appl. 21, 375–383 (1996).
  45. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  46. E. Miyahara, “Spectral sensitivity functions of X-chromosome-linked color defective observers,” Ph.D. dissertation (University of Chicago, Chicago, Ill., 1993).
  47. H. Krastel, W. Jaeger, S. Zimmerman, B. Heckman, and M. Krystek, “Systematics of human photopic spectral sensitivity,” Doc. Ophthalmol. Proc. Ser. 54, 323–339 (1991).
  48. C. Hudson and J. M. Wild, “The influence of pre-receptoral absorption on blue/yellow automated perimetry,” in Perimetry Update 1992/1993, R. P. Mills, ed. (Kugler, Amsterdam, 1993), pp. 451–457.
  49. P. Sample, G. Martinez, and R. Weinreb, “Short-wavelength automated perimetry without lens density testing,” Am. J. Ophthalmol. 118, 632–641 (1994).
  50. M. Kalloniatis and R. S. Harwerth, “Differential adaptation of cone mechanisms explains the preferential loss of short-wavelength cone sensitivity in retinal disease,” in Colour Vision Deficiencies IX, B. Drum and G. Verriest, eds., Vol. 52 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 353–364.
  51. A. Chaparro, C. F. Stromeyer, G. Chen, and R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 22, 3103–3118 (1995).
  52. D. C. Hood and V. Greenstein, “Models of the normal and abnormal rod system,” Vision Res. 30, 51–68 (1990).
  53. T. M. Nork, S. A. McCormick, G. M. Chao, and J. V. Odom, “Distribution of carbonic anhydrase among human photoreceptors,” Invest. Ophthalmol. Visual Sci. 31, 145–1457 (1990).
  54. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
  55. A. Nagy and J. Doyal, “Red–green color discrimination as a function of stimulus field size in peripheral vision,” J. Opt. Soc. Am. A 10, 1147–1156 (1993).
  56. T. Kuyk, “Spectral sensitivity of the peripheral retina to large and small stimuli,” Vision Res. 22, 1293–1297 (1982).
  57. J. Felius, W. H. Swanson, R. L. Fellman, J. R. Lynn, and R. J. Starita, “Spatial summation for selected ganglion cell mosaics in patients with glaucoma,” in Perimetry Update 1996/1997 M. Wall, ed. (Kugler, Amsterdam, 1997), pp. 213–221.
  58. B. B. Lee, “Receptive field structure in the primate retina,” Vision Res. 36, 631–644 (1996).
  59. D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 24, 731–735 (1994).
  60. P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
  61. S. L. Guth and H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
  62. K. Kranda and P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
  63. L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve,” Psychol. Mon. 38, 1–87 (1928).
  64. C. F. Stromeyer, G. R. Cole, and R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
  65. C. F. Stromeyer, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low-spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
  66. A. Shapiro, Q. Zaidi, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
  67. G. R. Cole, C. F. Stromeyer, and R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited