OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 320–327

Rigorous vector diffraction of electromagnetic waves by bidimensional photonic crystals

E. Centeno and D. Felbacq  »View Author Affiliations

JOSA A, Vol. 17, Issue 2, pp. 320-327 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (808 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a numerical study of bidimensional photonic crystals with an emphasis on the behavior of the gaps versus the polarization and the conicity of the incident plane wave. We use a rigorous modal theory of diffraction at oblique incidence by a set of arbitrarily shaped parallel fibers. This theory allows the study of the refractive properties of bidimensional photonic crystals. We develop a heuristic method of homogenization that allows us to predict the position of the gaps and their behavior with respect to the polarization and the conicity angle. With this homogenization scheme, we also present some important elements for obtaining full gaps.

© 2000 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(290.4210) Scattering : Multiple scattering

Original Manuscript: January 12, 1999
Revised Manuscript: July 20, 1999
Manuscript Accepted: September 1, 1999
Published: February 1, 2000

E. Centeno and D. Felbacq, "Rigorous vector diffraction of electromagnetic waves by bidimensional photonic crystals," J. Opt. Soc. Am. A 17, 320-327 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Felbacq, G. Tayeb, D. Maystre, “Scattering by a set of parallel cylinders,” J. Opt. Soc. Am. A 11, 2526–2538 (1994). [CrossRef]
  2. D. Felbacq, G. Tayeb, D. Maystre, “Localization of light by a set of parallel cylinders,” J. Mod. Opt. 42, 473–482 (1995). [CrossRef]
  3. V. Twersky, “Multiple scattering of radiation by an arbitrary configuration of parallel cylinders,” J. Acoust. Soc. Am. 24, 42–46 (1952). [CrossRef]
  4. S. C. Lee, “Scattering by closely-spaced radially stratified parallel cylinders,” J. Quant. Spectrosc. Radiat. Transfer 48, 119–130 (1992). [CrossRef]
  5. L. M. Li, Z. Q. Zhang, “Multiple-scattering approach to finite-sized photonic bandgap materials,” Phys. Rev. B 58, 9587–9590 (1998). [CrossRef]
  6. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1970).
  7. P. Vincent, R. Petit, “Sur la diffraction d’une onde plane par un cylindre diélectrique,” Opt. Commun. 5, 261–266 (1972). [CrossRef]
  8. D. Maystre, P. Vincent, “Diffraction d’une onde électromagnétique par un objet cylindrique non infiniment conducteur et de section quelconque,” Opt. Commun. 5, 327–330 (1972). [CrossRef]
  9. M. Nevière, E. Popov, “New theoretical method for electromagnetic wave diffraction by metallic or dielectric cylinder, bare or coated with thin dielectric layer,” J. Electromagn. Waves Appl. 12, 1265–1296 (1998). [CrossRef]
  10. D. Maystre, “Electromagnetic study of photonic band gaps,” Pure Appl. Opt. 3, 975–993 (1994). [CrossRef]
  11. J. D. Joannopoulos, R. Meade, J. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  12. J. Broeng, S. E. Barkou, P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998). [CrossRef]
  13. T. Sondergaard, J. Broeng, S. E. Barkou, “Suppression of spontaneous emission in two-dimensional honeycomb photonic band structure estimated using a new effective-index model,” IEEE J. Quantum Electron. 34, 2308–2313 (1998). [CrossRef]
  14. D. Felbacq, G. Bouchitté, “Homogenization of a set of parallel fibers,” Waves Random Media 7, 245–255 (1997). [CrossRef]
  15. H. Hasimoto, “On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres,” J. Fluid Dynamics 5, 317–328 (1959).
  16. M. Zukovski, H. Brenner, “Effective conductivity of composite materials composed of cubic arrangements of spherical particles embedded in an isotropic matrix,” Z. Angew. Math. Phys. 28, 979–992 (1977). [CrossRef]
  17. J. W. S. Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of the medium,” Philos. Mag. 34, 481–502 (1892). [CrossRef]
  18. G. Tayeb, D. Maystre, “Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities,” J. Opt. Soc. Am. A 14, 3323–3332 (1997). [CrossRef]
  19. E. Centeno, D. Felbacq, “Characterization of defect modes in finite bidimensional photonic crystals,” J. Opt. Soc. Am. A 16, 2705–2712 (1999). [CrossRef]
  20. “Photonic Band Structure,” special issue, J. Mod. Opt. 41, 171–404 (1994). [CrossRef]
  21. “Development and Applications of Materials Exhibiting Photonic Band Gaps,” special issue, J. Opt. Soc. Am. B 10, 279–413 (1993).
  22. E. Centeno, D. Felbacq, “Guiding waves with photonic crystals,” Opt. Commun. 160, 57–60 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited