OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 335–341

Polarization of almost-plane waves

Colin J. R. Sheppard  »View Author Affiliations


JOSA A, Vol. 17, Issue 2, pp. 335-341 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000335


View Full Text Article

Acrobat PDF (152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The general polarization behavior of almost-plane waves, in which the electric field varies slowly over a circular pupil, is considered, on the basis of an axial Hertz potential treatment and expansion in Zernike polynomials. The resultant modes of a circular aperture are compared with the well-known waveguide (or optical fiber) modes and Gaussian beam modes. The wave can be decomposed into partial waves of electric and magnetic types. The modes for a square pupil are also considered. The particular application of the effect on polarization of focusing the waves is discussed. Another application discussed is the Fresnel reflection from a dielectric interface, it being shown that the Fresnel reflection alters the relative strength of the electric and magnetic components.

© 2000 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.5430) Physical optics : Polarization

Citation
Colin J. R. Sheppard, "Polarization of almost-plane waves," J. Opt. Soc. Am. A 17, 335-341 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-2-335


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975).
  2. Y. Itoh, “Evaluation of aberrations using the generalized prolate spheroidal wavefunctions,” J. Opt. Soc. Am. 60, 10–14 (1970).
  3. B. R. Frieden, “Evaluation, design and extrapolation methods for optical signals based on use of the prolate functions,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1971), Vol. 9, pp. 311–407.
  4. J. F. Nye and M. Berry, “Dislocations of wave-fronts,” Proc. R. Soc. London Ser. A 336, 165–190 (1974).
  5. S. A. Schelkunoff, Electromagnetic Waves (Van Nostrand, New York, 1943).
  6. J. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  7. A. Nisbet, “Hertzian electromagnetic potentials and associated gauge transformations,” Proc. R. Soc. London Ser. A 231, 250–263 (1955).
  8. H. S. Green and E. Wolf, “A scalar representation of electromagnetic fields,” Proc. Phys. Soc. London Sect. A 66, 1129–1137 (1953).
  9. E. Wolf, “A scalar representation of electromagnetic fields. II,” Proc. Phys. Soc. London Sect. A 74, 269–280 (1959).
  10. E. T. Whittaker, “On an expression of the electromagnetic field due to electrons by means of two scalar potential functions,” Proc. London Math. Soc. 1, 367–372 (1904).
  11. D. Pattanayak and G. Agrawal, “Representation of vector electromagnetic beams,” Phys. Rev. A 22, 1159–1164 (1980).
  12. L. W. Davis and G. Patsakos, “Comment on ‘Representation of vector electromagnetic beams’” Phys. Rev. A 26, 3702–3703 (1982).
  13. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
  14. J. F. Nye, “Polarization effects in the diffraction of electromagnetic waves: the role of disclinations,” Proc. R. Soc. London Ser. A 387, 105–132 (1983).
  15. J. F. Nye, “Lines of circular polarization in electromagnetic wave fields,” Proc. R. Soc. London Ser. A 389, 279–290 (1983).
  16. J. F. Nye and J. V. Hajnal, “The wave structure of monochromatic electromagnetic waves,” Proc. R. Soc. London Ser. A 409, 21–36 (1987).
  17. J. V. Hajnal, “Singularities in the transverse fields of electromagnetic waves. 1. Theory,” Proc. R. Soc. London Ser. A 414, 433–446 (1987).
  18. J. V. Hajnal, “Singularities in the transverse fields of electromagnetic waves. 2. Observations on the electric field,” Proc. R. Soc. London Ser. A 414, 447–468 (1987).
  19. R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian–Maxwell beams,” J. Opt. Soc. Am. A 3, 536–540 (1986).
  20. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
  21. E. Snitzer and H. Osterberg, “Observed dielectric waveguide modes in the visible spectrum,” J. Opt. Soc. Am. 51, 499–505 (1961).
  22. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971).
  23. J. M. Vaughan and D. V. Willetts, “Temporal and interference fringe analysis of TEM01* laser modes,” J. Opt. Soc. Am. 73, 1018–1021 (1983).
  24. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communications Electronics, 2nd ed. (Wiley, New York, 1984).
  25. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491–498 (1961).
  26. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
  27. C. J. R. Sheppard and P. Török, “Electromagnetic field in the focal region of an electric dipole wave,” Optik (Stuttgart) 104, 175–177 (1997).
  28. C. J. R. Sheppard, “Electromagnetic field in the focal region of wide-angular annular lens and mirror systems,” IEE J. Microwaves, Opt. Acoust. 2, 163–166 (1978).
  29. C. J. R. Sheppard and P. Török, “Efficient calculation of electromagnetic diffraction in optical systems using a multipole expansion,” J. Mod. Opt. 44, 803–818 (1997).
  30. C. J. R. Sheppard and M. Gu, “Axial imaging through an aberrating layer of water in confocal microscopy,” Opt. Commun. 88, 180–190 (1992).
  31. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).
  32. S. Hell and Wijnaendts-van-Resandt, “The application of polarized confocal microscopy for size measurement of resist structures,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. SPIE 1139, 92–98 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited