## Structure of the set of paraxial optical systems

JOSA A, Vol. 17, Issue 2, pp. 342-355 (2000)

http://dx.doi.org/10.1364/JOSAA.17.000342

Enhanced HTML Acrobat PDF (521 KB)

### Abstract

The set of paraxial optical systems is the manifold of the group of symplectic matrices. The structure of this group is nontrivial: It is not simply connected and is not of an exponential type. Our analysis clarifies the origin of the metaplectic phase and the inherent limitations for optical map fractionalization. We describe, for the first time to our knowledge, an image girator and a cross girator whose geometric and wave implementations are of interest.

© 2000 Optical Society of America

**OCIS Codes**

(000.3870) General : Mathematics

(080.2730) Geometric optics : Matrix methods in paraxial optics

**History**

Original Manuscript: May 26, 1999

Revised Manuscript: October 1, 1999

Manuscript Accepted: October 5, 1999

Published: February 1, 2000

**Citation**

R. Simon and Kurt Bernardo Wolf, "Structure of the set of paraxial optical systems," J. Opt. Soc. Am. A **17**, 342-355 (2000)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-2-342

Sort: Year | Journal | Reset

### References

- K. Iwasawa, “On the representations of Lie algebras,” Jpn. J. Math. 19, 513–523 (1948); “On some types of topological groups,” Ann. Math. 50, 507–558 (1948).
- V. Bargmann, “Irreducible unitary representations of the Lorentz group,” Ann. Math. 48, 568–640 (1947);“Group representation in Hilbert spaces of analytic functions,” in Analytical Methods in Mathematical Physics, P. Gilbert, R. G. Newton, eds. (Gordon & Breach, New York, 1970), pp. 27–63. [CrossRef]
- K. B. Wolf, “The symplectic groups, their parametrization and cover,” in Lie Methods in Optics, J. Sánchez-Mondragón, K. B. Wolf, eds., Vol. 250 of Lecture Notes in Physics (Springer-Verlag, Berlin, 1986), App. A, pp. 227–238; “Representations of the algebra sp(2, R),” ibid., pp. 239–247; reprinted in Dynamical Groups and Spectrum Generating Algebras, A. Barut, A. Bohm, Y. Ne’eman, eds. (World Scientific, Singapore, 1989), pp. 1076–1087, 1088–1096.
- See, e.g., H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass., 1950).
- R. Simon, N. Mukunda, “Iwasawa decomposition for SU(1, 1) and the Gouy effect for squeezed states,” Opt. Commun. 95, 39–45 (1993). [CrossRef]
- R. Simon, N. Mukunda, “The two-dimensional symplectic and metaplectic groups and their universal cover,” in Symmetries in Science, V. B. Gruber, ed. (Plenum, New York, 1993), pp. 659–689; G. S. Agarwal, R. Simon, “A simple realization of fractional Fourier transform and relation to harmonic oscillator Green’s function,” Opt. Commun. 110, 23–26 (1994);K. Sundar, N. Mukunda, R. Simon, “Coherent mode decomposition of general anisotropic Gaussian Schell model beams,” J. Opt. Soc. Am. A 12, 560–569 (1995);R. Simon, N. Mukunda, “Iwasawa decomposition in first order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams,” J. Opt. Soc. Am. A 15, 2146–2155 (1998). [CrossRef]
- R. Simon, N. Mukunda, B. Dutta, “Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms,” Phys. Rev. A 49, 1567–1583 (1994). [CrossRef] [PubMed]
- K. B. Wolf, Integral Transforms in Science and Engineering (Plenum, New York, 1979).
- D. F. V. James, G. S. Agarwal, “The generalized Fresnel transform and its application to optics,” Opt. Commun. 126, 207–212 (1996). [CrossRef]
- G. S. Agarwal, R. Simon, “An experiment for the study of the Gouy effect for squeezed states,” Opt. Commun. 100, 411–414 (1993). [CrossRef]
- R. Simon, N. Mukunda, “Bargmann invariant and the geometry of the Gouy effect,” Phys. Rev. Lett. 70, 880–883 (1993). [CrossRef] [PubMed]
- R. Simon, E. C. G. Sudarshan, N. Mukunda, “Generalized rays in first order optics: transformation properties of Gaussian Schell model fields,” Phys. Rev. A 29, 3273–3279 (1984). [CrossRef]
- B. Dutta, N. Mukunda, R. Simon, A. Subramaniam, “Squeezed states, photon number distribution, and U(1) invariance,” J. Opt. Soc. Am. B 10, 253–264 (1993);R. Simon, E. C. G. Sudarshan, N. Mukunda, “Partially coherent beams and a generalized abcd-law,” Opt. Commun. 65, 322–328 (1988). [CrossRef]
- R. Simon, E. C. G. Sudarshan, N. Mukunda, “Anisotropic Gaussian Schell model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985); Arvind, B. Dutta, N. Mukunda, R. Simon, “Two-mode quantum systems: invariant classification of squeezing transformations and squeezed states,” Phys. Rev. A 52, 1609–1620 (1995). [CrossRef] [PubMed]
- E. C. G. Sudarshan, N. Mukunda, R. Simon, “Realisation of first order optical systems using thin lenses,” Opt. Acta 32, 855–872 (1985). [CrossRef]
- A. Sahin, H. M. Ozaktas, D. Mendlovic, “Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters,” Appl. Opt. 37, 2130–2141 (1998). [CrossRef]
- D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transforms and their implementations. I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993);H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transforms and their implementations. II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993);“Fractional Fourier transform of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993);“Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–750 (1995);D. Mendlovic, Y. Bitran, R. G. Dorsch, A. W. Lohmann, “Optical fractional correlation: experimental results,” J. Opt. Soc. Am. A 12, 1665–1670 (1995). [CrossRef]
- J. Shamir, N. Cohen, “Root and power transformations in optics,” J. Opt. Soc. Am. A 12, 2415–2423 (1995). [CrossRef]
- R. Simon, N. Mukunda, E. C. G. Sudarshan, “Hamilton’s theory of turns generalized to Sp(2, R),” Phys. Rev. Lett. 62, 1331–1334 (1989);“The theory of screws—a new geometric representation for the group SU(1, 1),” J. Math. Phys. 30, 1000–1006 (1989). [CrossRef] [PubMed]
- W. Hamilton, Lectures on Quaternions (Dublin, 1853). An excellent review of Hamilton’s theory of turns for SU(2) can be found in L. C. Biedenharn, J. D. Louck, Angular Momentum in Quantum Mechanics, Vol. 8 of Encyclopedia of Mathematics and Its Applications (Addison-Wesley, Reading, Mass., 1881).
- R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Wiley, New York, 1974).
- A. Lohmann, “The Wigner function and its optical production,” Opt. Commun. 42, 32–37 (1980); H. O. Bartelt, K.-H. Brenner, H. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980);H. Bartelt, K.-H. Brenner, “The Wigner distribution function: an alternate signal representation in optics,” Isr. J. Technol. 18, 260–262 (1980); K.-H. Brenner, H. Lohmann, “Wigner distribution function display of complex 1D signals,” Opt. Commun. 42, 310–314 (1982). [CrossRef]
- R. Simon, N. Mukunda, “Twisted Gaussian Schell model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993);“Twist phase in Gaussian beam optics,” J. Opt. Soc. Am. A 15, 2373–2382 (1998). [CrossRef]
- A. T. Friberg, E. Tervonen, J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994). [CrossRef]
- R. Simon, N. Mukunda, E. C. G. Sudarshan, “Hamilton’s theory of turns and a new geometrical representation for polarization optics,” Pramana J. Phys. 32, 769–792 (1989). [CrossRef]
- R. Simon, N. Mukunda, “Minimal three component SU(2) gadget for polarization optics,” Phys. Lett. A 143, 165–169 (1990);V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, G. S. Spagnolo, “The Simon–Mukunda polarization gadget,” Eur. J. Phys. 17, 279–284 (1996). [CrossRef]
- H. Weyl, The Theory of Groups and Quantum Mechanics, 2nd ed. (Dover, New York, 1930).
- M. Moshinsky, C. Quesne, “Oscillator systems,” in Proceedings of the 15th Solvay Conference in Physics (1970) (Gordon & Breach, New York, 1974); M. Moshinsky, C. Quesne, “Linear canonical transformations and their unitary representation,” J. Math. Phys. 12, 1772–1780 (1971);C. Quesne, M. Moshinsky, “Canonical transformations and matrix elements,” J. Math. Phys. 12, 1780–1783 (1971). [CrossRef]
- O. Castaños, E. López-Moreno, K. B. Wolf, “Canonical transforms for paraxial wave optics,” in Lie Methods in Optics, J. Sánchez-Mondragón, K. B. Wolf, eds., Vol. 250 of Lecture Notes in Physics (Springer-Verlag, Berlin, 1986), pp. 159–182.
- A. J. Dragt, E. Forest, K. B. Wolf, “Foundations of a Lie algebraic theory of geometrical optics,” in Lie Methods in Optics, J. Sánchez-Mondragón, K. B. Wolf, eds., Vol. 250 of Lecture Notes in Physics (Springer-Verlag, Berlin, 1986), Chap. 4, pp. 105–158. [CrossRef]
- K. B. Wolf, “The group-theoretical treatment of aberrating systems. III. The classification of asymmetric aberrations,” J. Math. Phys. 28, 2498–2507 (1987);“Symmetry-adapted classification of aberrations,” J. Opt. Soc. Am. A 5, 1226–1232 (1988). [CrossRef]
- E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932);H.-W. Lee, “Theory and application of the quantum phase-space distribution functions,” Phys. Rep. 259, 147–211 (1995). [CrossRef]
- N. M. Atakishiyev, S. M. Chumakov, A. L. Rivera, K. B. Wolf, “On the phase space description of quantum nonlinear dynamics,” Phys. Lett. A 215, 128–134 (1996);A. L. Rivera, N. M. Atakishiyev, S. M. Chumakov, K. B. Wolf, “Evolution under polynomial Hamiltonians in quantum and optical phase spaces,” Phys. Rev. A 55, 876–889 (1997). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.