OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 425–433

Background estimation in nonlinear image restoration

Geert M. P. van Kempen and Lucas J. van Vliet  »View Author Affiliations


JOSA A, Vol. 17, Issue 3, pp. 425-433 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000425


View Full Text Article

Enhanced HTML    Acrobat PDF (562 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One of the essential ways in which nonlinear image restoration algorithms differ from linear, convolution-type image restoration filters is their capability to restrict the restoration result to nonnegative intensities. The iterative constrained Tikhonov–Miller (ICTM) algorithm, for example, incorporates the nonnegativity constraint by clipping all negative values to zero after each iteration. This constraint will be effective only when the restored intensities have near-zero values. Therefore the background estimation will have an influence on the effectiveness of the nonnegativity constraint of these algorithms. We investigated quantitatively the dependency of the performance of the ICTM, Carrington, and Richardson–Lucy algorithms on the estimation of the background and compared it with the performance of the linear Tikhonov–Miller restoration filter. We found that the performance depends critically on the background estimation: An underestimation of the background will make the nonnegativity constraint ineffective, which results in a performance that does not differ much from the Tikhonov–Miller filter performance. A (small) overestimation, however, degrades the performance dramatically, since it results in a clipping of object intensities. We propose a novel general method to estimate the background based on the dependency of nonlinear restoration algorithms on the background, and we demonstrate its applicability on real confocal images.

© 2000 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.3020) Image processing : Image reconstruction-restoration
(100.6890) Image processing : Three-dimensional image processing
(180.6900) Microscopy : Three-dimensional microscopy

History
Original Manuscript: March 4, 1999
Revised Manuscript: August 23, 1999
Manuscript Accepted: November 8, 1999
Published: March 1, 2000

Citation
Geert M. P. van Kempen and Lucas J. van Vliet, "Background estimation in nonlinear image restoration," J. Opt. Soc. Am. A 17, 425-433 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-3-425


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Lagendijk, J. Biemond, Iterative Identification and Restoration of Images, Vol. IP (Kluwer Academic, Dordrecht, The Netherlands, 1991).
  2. H. T. M. van der Voort, K. C. Strasters, “Restoration of confocal images for quantitative image analysis,” J. Microsc. 178, 165–181 (1995). [CrossRef]
  3. W. A. Carrington, “Image restoration in 3D microscopy with limited data,” in Bioimaging and Two-Dimensional Spectroscopy, L. C. Smith, ed., Proc. SPIE1205, 72–83 (1990). [CrossRef]
  4. W. A. Carrington, R. M. Lynch, E. M. Moore, G. Isenberg, K. E. Fogarty, F. S. Fay, “Superresolution three-dimensional images of fluorescence in cells with minimal light exposure,” Science 268, 1483–1487 (1995). [CrossRef] [PubMed]
  5. T. J. Holmes, “Maximum-likelihood image restoration adapted for noncoherent optical imaging,” J. Opt. Soc. Am. A 5, 666–673 (1988). [CrossRef]
  6. G. M. P. van Kempen, “Image restoration in fluorescence microscopy,” Ph.D. Thesis (Delft University of Technology, Delft, The Netherlands, 1999).
  7. A. P. Dempster, N. M. Laird, D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. B Sect. 39, 1–37 (1977).
  8. Y. Vardi, L. A. Shepp, L. Kaufman, “A statistical model for positron emission tomography,” J. Am. Stat. Assoc. 80, 8–35 (1985). [CrossRef]
  9. L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging MI-1, 113–121 (1982). [CrossRef]
  10. D. L. Snyder, A. M. Hammoud, R. L. White, “Image recovery from data acquired with a charge-coupled-device camera,” J. Opt. Soc. Am. A 10, 1014–1023 (1993). [CrossRef] [PubMed]
  11. G. M. P. van Kempen, L. J. van Vliet, P. J. Verveer, H. T. M. van der Voort, “A quantitative comparison of image restoration methods for confocal microscopy,” J. Microsc. 185, 354–365 (1997). [CrossRef]
  12. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972). [CrossRef]
  13. R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta 14, 709–720 (1979).
  14. A. K. Jain, Fundamentals of Digital Image Processing, Vol. IP (Prentice Hall, Englewood Cliffs, N.J., 1989).
  15. J.-A. Conchello, “Superesolution and convergence properties of the expectation-maximization algorithm for maximum-likelihood deconvolution of incoherent images,” J. Opt. Soc. Am. A 15, 2609–2619 (1998). [CrossRef]
  16. J.-A. Conchello, J. G. McNally, “Fast regularization technique for expectation maximization algorithm for optical sectioning microscopy,” presented at the conference on Three-Dimensional Microscopy: Image Acquisition and Processing III, San Jose, Calif., February 1–3, 1996.
  17. H. C. Andrews, B. R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, N.J., 1977).
  18. M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (IOP, London, 1998).
  19. L. J. van Vliet, D. Sudar, I. T. Young, “Digital fluorescence imaging using cooled charge-coupled device array cameras,” in Cell Biology: A Laboratory Handbook, 2nd ed., J. E. Celis, ed. (Academic, London, 1998), Vol. 3, pp. 109–120.
  20. J. Art, “Photon detectors for confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), pp. 183–196.
  21. A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, New York, 1977).
  22. T. Wilson, J. B. Tan, “Three dimensional image reconstruction in conventional and confocal microscopy,” Bioimaging 1, 176–184 (1993). [CrossRef]
  23. G. M. P. van Kempen, L. J. van Vliet, P. J. Verveer, “Application of image restoration methods for confocal fluorescence microscopy,” presented at the conference on Three-Dimensional Microscopy: Image Acquisition and Processing IV, San Jose, Calif., February 12–13, 1997.
  24. P. J. Verveer, M. J. Gemkow, T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193, 50–61 (1999). [CrossRef]
  25. P. J. Verveer, T. M. Jovin, “Acceleration of the ICTM image restoration algorithm,” J. Microsc. 188, 191–195 (1997). [CrossRef]
  26. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed., Vol. CS (Cambridge U. Press, Cambridge, UK, 1992).
  27. W. A. Carrington, K. E. Fogarty, “3-D molecular distribution in living cells by deconvolution of optical sections using light microscopy,” presented at the 13th Annual Northeast Bioengineering Conference, Philadelphia, Pa., March 12–13, 1987.
  28. D. L. Snyder, M. I. Miller, Random Point Processes in Time and Space, Vol. SP (Springer Verlag, Berlin, 1991).
  29. K. M. Perry, S. J. Reeves, “Generalized cross-validation as a stopping rule for the Richardson–Lucy algorithm,” presented at the conference on Restoration of HST Images and Spectra II, Baltimore, Md., November 18–19, 1993.
  30. P. W. Verbeek, H. A. Vrooman, L. J. van Vliet, “Low-level image processing by max-min filters,” Signal Process. 15, 249–258 (1988). [CrossRef]
  31. I. T. Young, “Automated Leukocyte Recognition,” in Automated Cell Identification and Cell Sorting, G. L. Wied, G. F. Bahr, eds. (Academic, New York, 1970), pp. 187–194.
  32. I. Heertje, E. C. Roijers, H. A. C. M. Hendrickx, “Liquid crystalline phases in the structuring of food products,” Lebensm.-Wiss. Technol. 31, 387–396 (1998). [CrossRef]
  33. G. M. P. van Kempen, N. van den Brink, L. J. van Vliet, M. van Ginkel, P. W. Verbeek, H. Blonk, “The application of a local dimensionality estimator to the analysis of 3-D microscopic network structures,” presented at the 11th Scandinavian Conference on Image Analysis, Kangerlussuaq, Greenland, June 7–11, 1999.
  34. P. J. Verveer, “Computational and optical methods for improving resolution and signal quality in fluorescence microscopy,” Ph.D. thesis (Delft University of Technology, Delft, The Netherlands, 1998).
  35. G. Demoment, “Image reconstruction and restoration: overview of common estimation structures and problems,” IEEE Trans. Acoust., Speech, Signal Process. 37, 2024–2036 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited