## Higher-order extrema in two-dimensional wave fields

JOSA A, Vol. 17, Issue 3, pp. 434-446 (2000)

http://dx.doi.org/10.1364/JOSAA.17.000434

Acrobat PDF (340 KB)

### Abstract

Higher-order extrema with topological indices greater than unity are discussed. Explicit constructions are given for their wave functions, and simple geometric rules are presented for analysis of their topological indices. Experimental means for verifying the theory with use of Gaussian laser beams are considered, unusual properties of optical vortices contructed from this new type of critical point are described, and applications to topologically based optical arithmetic are suggested.

© 2000 Optical Society of America

**OCIS Codes**

(070.2580) Fourier optics and signal processing : Paraxial wave optics

(200.1130) Optics in computing : Algebraic optical processing

(350.5030) Other areas of optics : Phase

**Citation**

Isaac Freund and Ari Belenkiy, "Higher-order extrema in two-dimensional wave fields," J. Opt. Soc. Am. A **17**, 434-446 (2000)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-3-434

Sort: Year | Journal | Reset

### References

- J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1502 (1987).
- J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
- P. Szwaykowski and J. Ojeda-Casteneda, “Nondiffracting beams and self imaging phenomenon,” Opt. Commun. 83, 1–4 (1991).
- R. Piestun and J. Shamir, “Generalized propagation-invariant wave fields,” J. Opt. Soc. Am. A 15, 3039–3044 (1998).
- W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am. 57, 772–778 (1967).
- W. D. Montgomery, “Algebraic formulation of diffraction applied to self imaging,” J. Opt. Soc. Am. 58, 1112–1124 (1968).
- O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am. 63, 416–419 (1973).
- A. W. Lohman, “An array illuminator based on the Talbot effect,” Optik (Stuttgart) 79, 41–45 (1988).
- M. V. Berry and E. Bodenschatz, “Caustics, multiply reconstructed by Talbot interference,” J. Mod. Opt. 46, 349–365 (1999).
- J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974).
- M. Berry, “Singularities in waves and rays,” in Physics of Defects, R. Balian, M. Kleman, and J.-P. Poirier, eds. (North-Holland, Amsterdam, 1981), pp. 453–549.
- V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).
- G. A. Swartzlander, Jr., and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).
- N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
- G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993).
- I. Freund, N. Shvarstman, and V. Freilikher, “Optical dislocation networks in highly random media,” Opt. Commun. 101, 247–264 (1993).
- M. Brambilla, M. Catteneo, L. A. Lugiato, R. Pirovano, and F. Prati, “Dynamical transverse laser patterns. I. Theory,” Phys. Rev. A 49, 1427–1451 (1994).
- E. Abromochkin and V. Volostnikov, “Spiral-type beams; optical and quantum aspects,” Opt. Commun. 125, 302–323 (1996).
- D. Rozas, Z. S. Sacks, and G. A. Swartzlander, Jr., “Experimental observation of fluid-like motion of optical vortices,” Phys. Rev. Lett. 79, 3399–3402 (1997).
- M. V. Berry and C. Upstill, “Catastrophe optics,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1980), pp. 257–346.
- M. Berry, “Faster than Fourier,” in Quantum Coherence and Reality, J. S. Anandan and J. L. Safko, eds. (World Scientific, London, 1994), pp. 55–65.
- G. P. Karman, M. W. Beijersbergen, A. van Duiji, D. Bouwmeester, and J. P. Woerdman, “Airy pattern reorganization and subwavelength structure in a focus,” J. Opt. Soc. Am. A 15, 884–899 (1998).
- M. V. Berry, “Wave dislocation reactions in non-paraxial beams,” J. Mod. Opt. 45, 1845–1858 (1998).
- J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, San Francisco, 1988), Chap. 4, pp. 73–83.
- I. Freund, “Saddle point wave fields,” Opt. Commun. 163, 230–242 (1999).
- S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, Mass., 1994), Chap. 6, pp. 174–180.
- V. I. Arnold, Ordinary Differential Equations (MIT Press, Cambridge, Mass., 1973), Chap. 5, pp. 254–268.
- B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry—Methods and Applications (Springer-Verlag, Berlin, 1984, 1986, 1990), Part II. The geometry and topology of manifolds (1986); Part III. Introduction to homology theory (1990).
- J. Milnor, Morse Theory (Princeton U. Press, Princeton, N.J., 1963).
- A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
- I. Freund, “Critical point explosions in two-dimensional wave fields,” Opt. Commun. 159, 99–117 (1999).
- I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1965), p. 369, No. 3.616.8.
- M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Natl. Bur. Stand. Applied Mathematics Series No. 55 (U.S. GPO, Washington, D.C., 1964).
- M. S. Soskin, V. N. Gorshkov, and M. V. Vasnetsov, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
- M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994).
- G. H. Kim, J. H. Jeon, K. H. Ko, H. J. Moon, and J. H. Lee, “Optical vortices produced with a nonspiral phase plate,” Appl. Opt. 36, 8614–8621 (1997).
- B. Y. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985), Chap. 3.
- A. M. Deykoon, M. S. Soskin, and G. A. Swartzlander, Jr., “Nonlinear optical catastrophe from a smooth initial beam,” Opt. Lett. 24, 1224–1226 (1999).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.