OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 447–455

Axially symmetric on-axis flat-top beam

Qing Cao and Sien Chi  »View Author Affiliations


JOSA A, Vol. 17, Issue 3, pp. 447-455 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000447


View Full Text Article

Enhanced HTML    Acrobat PDF (192 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A synthesis method for arbitrary on-axis intensity distributions from axially symmetric fields is developed in the paraxial approximation. As an important consequence, a new pseudo-nondiffracting beam, the axially symmetric on-axis flat-top beam (AFTB), is given by an integral transform form. This AFTB is completely determined by three simple parameters: the central spatial frequency Sc, the on-axis flat-top length L, and the on-axis central position zc. When LSc1, this AFTB can give a nearly flat-top intensity distribution on the propagation axis. In particular, this AFTB approaches the nondiffracting zero-order Bessel J0 beam when L. It is revealed that the superposition of multiple AFTB fields can give multiple on-axis flattop intensity regions when some appropriate conditions are satisfied.

© 2000 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(220.1140) Optical design and fabrication : Alignment
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: May 28, 1999
Revised Manuscript: October 22, 1999
Manuscript Accepted: October 22, 1999
Published: March 1, 2000

Citation
Qing Cao and Sien Chi, "Axially symmetric on-axis flat-top beam," J. Opt. Soc. Am. A 17, 447-455 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-3-447


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  2. J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  3. J. Turunen, A. Vasara, A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988). [CrossRef] [PubMed]
  4. A. Vasara, J. Turunen, A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef] [PubMed]
  5. A. J. Cox, D. C. Dibble, “Holographic reproduction of a diffraction-free beam,” Appl. Opt. 30, 1330–1332 (1991). [CrossRef] [PubMed]
  6. A. J. Cox, J. D’Anna, “Constant-axial-intensity nondiffracting beam,” Opt. Lett. 17, 232–234 (1992). [CrossRef] [PubMed]
  7. Z. Jaroszewich, J. Sochacki, A. Kolodziejczyk, L. R. Staronski, “Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions,” Opt. Lett. 18, 1893–1895 (1993). [CrossRef]
  8. R. Piestun, J. Shamir, “Control of wave-front propagation with diffractive elements,” Opt. Lett. 19, 771–773 (1994). [CrossRef] [PubMed]
  9. B. Salik, J. Rosen, A. Yariv, “One-dimensional beam shaping,” J. Opt. Soc. Am. A 12, 1702–1706 (1995). [CrossRef]
  10. J. Rosen, B. Salik, A. Yariv, H. K. Liu, “Pseudonondiffracting slitlike beam and its analogy to the pseudonondispersing pulse,” Opt. Lett. 20, 423–425 (1995). [CrossRef] [PubMed]
  11. J. Rosen, B. Salik, A. Yariv, “Pseudo-nondiffracting beams generated by radial harmonic functions,” J. Opt. Soc. Am. A 12, 2446–2457 (1995). [CrossRef]
  12. Z. Jiang, Q. Lu, Z. Liu, “Propagation of apertured Bessel beams,” Appl. Opt. 34, 7183–7185 (1995). [CrossRef] [PubMed]
  13. B.-Z. Dong, G.-Z. Yang, B.-Y. Gu, O. K. Ersoy, “Iterative optimization approach for designing an axicon with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 13, 97–103 (1996). [CrossRef]
  14. A. T. Friberg, “Stationary-phase analysis of generalized axicons,” J. Opt. Soc. Am. A 13, 743–750 (1996). [CrossRef]
  15. L. Niggl, T. Lanzl, M. Maier, “Properties of Bessel beams generated by periodic grating of circular symmetry,” J. Opt. Soc. Am. A 14, 27–33 (1997). [CrossRef]
  16. S. Y. Popov, A. T. Friberg, “Design of diffractive axicons for partially coherent light,” Opt. Lett. 23, 1639–1641 (1998). [CrossRef]
  17. W.-X. Cong, N.-X. Chen, B.-Y. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362–2364 (1998). [CrossRef]
  18. M. Honkanen, J. Turunen, “Tandem systems for efficient generation of uniform-axial-intensity Bessel fields,” Opt. Commun. 154, 368–375 (1998). [CrossRef]
  19. S. Y. Popov, A. T. Friberg, “Apodization of generalized axicons to produce uniform axial line images,” Pure Appl. Opt. 7, 537–548 (1998). [CrossRef]
  20. A. G. Sedukhin, “Beam-preshaping axicon focusing,” J. Opt. Soc. Am. A 15, 3057–3066 (1998). [CrossRef]
  21. Z. Jaroszewicz, J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15, 2383–2390 (1998). [CrossRef]
  22. Z. Jaroszewicz, J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a converging aberrated lens,” J. Opt. Soc. Am. A 16, 191–197 (1999). [CrossRef]
  23. N. Guérineau, J. Primot, “Nondiffracting array generation using an N-wave interferometer,” J. Opt. Soc. Am. A 16, 293–298 (1999). [CrossRef]
  24. J. Rosen, A. Yariv, “Synthesis of an arbitrary axial field profile by computer-generated holograms,” Opt. Lett. 19, 843–845 (1994). [CrossRef] [PubMed]
  25. R. Piestun, B. Spektor, J. Shamir, “Wave fields in three dimensions: analysis and synthesis,” J. Opt. Soc. Am. A 13, 1837–1848 (1996). [CrossRef]
  26. R. Liu, B.-Z. Dong, G.-Z. Yang, B.-Y. Gu, “Generation of pseudo-nondiffracting beams with use of diffractive phase elements designed by the conjugate-gradient method,” J. Opt. Soc. Am. A 15, 144–151 (1998). [CrossRef]
  27. R. Liu, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “Design of diffractive phase elements that realize axial-intensity modulation based on the conjugate-gradient method,” J. Opt. Soc. Am. A 15, 689–694 (1998). [CrossRef]
  28. See, for examples, J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), pp. 55–58 and pp. 11–12; G. P. Agrawal, D. N. Pattanayak, “Gaussian beam propagation beyond the paraxial approximation,” J. Opt. Soc. Am. 69, 575–578 (1979); Q. Cao, X. Deng, “Corrections to the paraxial approximation of an arbitrary free-propagation beam,” J. Opt. Soc. Am. A 15, 1144–1148 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited