OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 580–588

Irregular S-cone mosaics in felid retinas. Spatial interaction with axonless horizontal cells, revealed by cross correlation

Peter Kurt Ahnelt, Eduardo Fernández, Oscar Martinez, Jose Angel Bolea, and Anna Kübber-Heiss  »View Author Affiliations


JOSA A, Vol. 17, Issue 3, pp. 580-588 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000580


View Full Text Article

Enhanced HTML    Acrobat PDF (1334 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In most mammals short-wavelength-sensitive (S) cones are arranged in irregular patterns with widely variable intercell distances. Consequently, mosaics of connected interneurons either may show some type of correlation to photoreceptor placement or may establish an independent lattice with compensatory dendritic organization. Since axonless horizontal cells (A-HC’s) are supposed to direct all dendrites to overlying cones, we studied their spatial interaction with chromatic cone subclasses. In the cheetah, the bobcat, and the leopard, anti-S-opsin antibodies have consistently colabeled the A-HC’s in addition to the S cones. We investigated the interaction between the two cell mosaics, using autocorrelation and cross-correlation procedures, including a Voronoi-based density probe. Comparisons with simulations of random mosaics show significantly lower densities of S cones above the cell bodies and primary dendrites of A-HC’s. The pattern results in different long-wavelength-sensitive-L- and S-cone ratios in the central versus the peripheral zones of A-HC dendritic fields. The existence of a related pattern at the synaptic level and its potential significance for color processing may be investigated in further studies.

© 2000 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.5000) Vision, color, and visual optics : Vision - patterns and recognition
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.6130) Vision, color, and visual optics : Spatial resolution
(330.6180) Vision, color, and visual optics : Spectral discrimination
(330.7310) Vision, color, and visual optics : Vision

History
Original Manuscript: September 8, 1999
Revised Manuscript: November 23, 1999
Manuscript Accepted: November 24, 1999
Published: March 1, 2000

Citation
Peter Kurt Ahnelt, Eduardo Fernández, Oscar Martinez, Jose Angel Bolea, and Anna Kübber-Heiss, "Irregular S-cone mosaics in felid retinas. Spatial interaction with axonless horizontal cells, revealed by cross correlation," J. Opt. Soc. Am. A 17, 580-588 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-3-580


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hughes, “The topography of vision in mammals of contrasting life style: comparative optics and retinal organization,” in Visual System of Vertebrates, F. Crescitelli, ed. (Springer, Berlin, 1972), Vol. 7, pp. 613–756.
  2. A. Szél, T. Diamantstein, P. Röhlich, “Identification of the blue-sensitive cones in the mammalian retina by anti-visual pigment antibody,” J. Comp. Neurol. 273, 593–602 (1988). [CrossRef] [PubMed]
  3. P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987). [CrossRef] [PubMed]
  4. F. M. de Monasterio, S. J. Schein, E. P. McCrane, “Staining of blue-sensitive cones of the macaque retina by a fluorescent dye,” Science 213, 1278–1281 (1981). [CrossRef]
  5. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991). [CrossRef] [PubMed]
  6. D. R. Williams, “Seeing through the photoreceptor mosaic,” Trends Neurosci. 9, 193–198 (1986). [CrossRef]
  7. D. R. Williams, R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385–387 (1983). [CrossRef] [PubMed]
  8. P. K. Ahnelt, J. N. Hokoç, P. Röhlich, “Photoreceptors in a primitive mammal, the South American opossum, Didelphis marsupialis aurita: characterization with anti-opsin immunolabeling,” Visual Neurosci. 12, 793–804 (1995). [CrossRef]
  9. D. Sandmann, B. B. Boycott, L. Peichl, “Blue-cone horizontal cells in the retinae of horses and other equidae,” J. Neurosci. 16, 3381–3396 (1996). [PubMed]
  10. A. Szél, P. Röhlich, A. R. Caffe, B. Juliusson, G. Aguirre, T. van Veen, “Unique topographic separation of two spectral classes of cones in the mouse retina,” J. Comp. Neurol. 325, 327–342 (1992). [CrossRef] [PubMed]
  11. Á. Szél, P. Röhlich, “Two cone types in rat retina detected by anti-visual pigment antibodies,” Exp. Eye Res. 55, 47–52 (1992). [CrossRef]
  12. A. Hendrickson, H. Djajad, D. Sajuthi, “The nocturnal simian Tarsius has short wavelength cones in an unusual topography,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 238 (1999).
  13. P. M. Martin, U. Grünert, “Analysis of the short wavelength-sensitive (‘blue’) cone mosaic in the primate retina: comparison of New World and Old World monkeys,” J. Comp. Neurol. 406, 1–14 (1999). [CrossRef] [PubMed]
  14. M. B. Shapiro, S. J. Schein, F. M. de Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc. 80, 803–812 (1985). [CrossRef]
  15. C. A. Curcio, K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169–180 (1992). [CrossRef]
  16. K. O. Long, S. K. Fisher, “The distributions of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi,” J. Comp. Neurol. 221, 329–340 (1983). [CrossRef] [PubMed]
  17. P. K. Ahnelt, “Characterization of the color related receptor mosaic in the ground squirrel retina,” Vision Res. 25, 1557–1567 (1985). [CrossRef] [PubMed]
  18. B. Müller, L. Peichl, “Topography of cones and rods in the tree shrew retina,” J. Comp. Neurol. 282, 581–594 (1989). [CrossRef] [PubMed]
  19. A. Gallego, “Horizontal cells of the Tetrapoda retina,” Prog. Clin. Biol. Res. 113, 9–29 (1982). [PubMed]
  20. L. Peichl, D. Sandmann, B. B. Boycott, “Comparative anatomy and function of mammalian horizontal cells,” in Development and Organization of the Retina, L. M. Chalupa, B. L. Finlay, eds. (Plenum, New York, 1998).
  21. B. B. Boycott, H. Kolb, “The horizontal cells of the rhesus monkey retina,” J. Comp. Neurol. 148, 115–139 (1973). [CrossRef] [PubMed]
  22. H. Kolb, A. Mariani, A. Gallego, “A second type of horizontal cell in the monkey retina,” J. Comp. Neurol. 189, 31–44 (1980). [CrossRef] [PubMed]
  23. P. K. Ahnelt, H. Kolb, “Horizontal cells and cone photoreceptors in primate retina: a Golgi-light microscopic study of spectral connectivity,” J. Comp. Neurol. 343, 387–405 (1994). [CrossRef] [PubMed]
  24. P. K. Ahnelt, H. Kolb, “Horizontal cells and cone photoreceptors in human retina: a Golgi-electron microscopic study of spectral connectivity,” J. Comp. Neurol. 343, 406–427 (1994). [CrossRef] [PubMed]
  25. D. M. Dacey, B. B. Lee, D. K. Stafford, J. Pokorny, V. C. Smith, “Horizontal cells of the primate retina: cone specificity without spectral opponency,” Science 271, 656–659 (1996). [CrossRef] [PubMed]
  26. T. L. Chan, U. Grünert, “Horizontal cell connections with short wavelength sensitive cones in the retina: a comparison between New World and Old World primates,” J. Comp. Neurol. 393, 196–209 (1998). [CrossRef] [PubMed]
  27. R. W. Rodieck, “The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies,” Visual Neurosci. 6, 95–111 (1991). [CrossRef]
  28. R. W. Rodieck, D. W. Marshak, “Spatial density and distribution of choline acetyltransferase immunoreactive cells in human, macaque, and baboon retinas,” J. Comp. Neurol. 321, 46–64 (1992). [CrossRef] [PubMed]
  29. N. Kouyama, D. W. Marshak, “The topographical relationship between two neuronal mosaics in the short wavelength-sensitive system of the primate retina,” Visual Neurosci. 14, 159–167 (1997). [CrossRef]
  30. S. L. Mills, S. C. Massey, “Distribution and coverage of A- and B-type horizontal cells stained with neurobiotin in the rabbit retina,” Visual Neurosci. 11, 549–560 (1994). [CrossRef]
  31. H. Wässle, L. Peichl, B. B. Boycott, “Topography of horizontal cells in the retina of the domestic cat,” Proc. R. Soc. London Ser. B. 203, 269–291 (1978). [CrossRef]
  32. E. Fernández, N. Cuenca, J. De Juan, “A compiled BASIC program for analysis of spatial point patterns, application to retinal studies,” J. Neurosci. Methods 50, 1–15 (1993). [CrossRef]
  33. H. Wässle, H. J. Riemann, “The mosaic of nerve cells in the mammalian retina,” Proc. R. Soc. London Ser. B 200, 441–461 (1978). [CrossRef]
  34. J. Cook, “Getting to grips with neuronal diversity,” in Development and Organization of the Retina, L. M. Chalupa, B. L. Finlay, eds. (Plenum, New York, 1998), pp. 91–120.
  35. J. E. Cook, “Spatial properties of retinal mosaics: an empirical evaluation of some existing measures,” Visual Neurosci. 13, 15–30 (1996). [CrossRef]
  36. P. J. Green, R. Sibson, “Computing Dirichlet tessellations in the plane,” Comput. J. (Cambridge) 21, 68–173 (1978).
  37. P. J. Diggle, Statistical Analysis of Spatial Point Patterns (Academic, New York, 1983).
  38. L. Galli-Resta, E. Novelli, Z. Kryger, G. H. Jacobs, B. E. Reese, “Modelling the mosaic organization of rod and cone photoreceptors with a minimal spacing rule,” Eur. J. Neurosci. 11, 1461–1469 (1999). [CrossRef] [PubMed]
  39. Requests for this program may be sent to O. Martinez at the address given on the title page.
  40. B. N. Boots, A. Getis, Point Pattern Analysis (Sage, Beverly Hills, Calif., 1988).
  41. P. J. Clark, F. C. Evans, “Distance to nearest neighbor as a measure of spatial relationship in populations,” Ecology 34, 445–453 (1954). [CrossRef]
  42. H. Wässle, B. B. Boycott, L. Peichl, “Receptor contacts of horizontal cells in the retina of the domestic cat,” Proc. R. Soc. London Ser. B 203, 247–267 (1978). [CrossRef]
  43. L. Peichl, Max-Planck-Institut für Hirnforschung, 60528 Frankfurt a.M., Germany (personal communication, 1999).
  44. B. G. Soni, R. G. Foster, “A novel and ancient vertebrate opsin,” FEBS Lett. 406, 279–283 (1998). [CrossRef]
  45. H. Sun, D. J. Gilbert, N. G. Copeland, N. A. Jenkins, J. Nathans, “Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium,” Proc. Natl. Acad. Sci. USA 94, 9893–9898 (1997). [CrossRef] [PubMed]
  46. I. Provencio, G. Jiang, W. J. De Grip, W. P. Hayes, M. D. Rollag, “Melanopsin: an opsin in melanophores, brain, and eye,” Proc. Natl. Acad. Sci. USA 95, 340–345 (1998). [CrossRef] [PubMed]
  47. M. I. Chiu, J. Nathans, “A sequence upstream of the mouse blue visual pigment gene directs blue cone-specific transgene expression in mouse retinas,” Visual Neurosci. 11, 773–780 (1994). [CrossRef]
  48. X. Luo, K. K. Gosh, P. R. Martin, U. Grünert, “Analysis of two types of cone bipolar cells in the retina of a New World monkey, the marmoset, Callithrix jacchus,” Visual Neurosci. 16, 707–719 (1999). [CrossRef]
  49. S. J. N. Hokoç, M. Medeiros De Oliveira, P. K. Ahnelt, “Three types of horizontal cells in a primitive mammal, the opossum (Didelphis marsupialis aurita),” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1152 (1993).
  50. E. V. Famiglietti, “Functional architecture of cone bipolar cells in mammalian retina,” Vision Res. 21, 1559–1563 (1981). [CrossRef] [PubMed]
  51. I. Hack, L. Peichl, “Horizontal cells of the rabbit retina are non-selectively connected to the cones,” Eur. J. Neurosci. 11, 2261–2274 (1999). [CrossRef] [PubMed]
  52. R. Pflug, H. Reitsamer, “Topographic variation of cone–cone interaction in spectral sensitivities determined from small field ERGs of rabbit retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 238 (1999).
  53. E. Raviola, R. F. Dacheux, “Axonless horizontal cells of the rabbit retina: synaptic connections and origin of the rod aftereffect,” J. Neurocytol. 19, 731–736 (1990). [CrossRef] [PubMed]
  54. K. C. Wikler, P. Rakic, “An array of early-differentiating cones precedes the emergence of the photoreceptor mosaic in the fetal retina,” Proc. Natl. Acad. Sci. USA 91, 6534–6538 (1994). [CrossRef]
  55. A. Szél, B. Vigh, T. van Veen, P. Röhlich, “Development of cone distribution patterns in mammals,” in Development and Organization of the Retina, L. M. Chalupa, B. L. Finlay, eds. (Plenum, New York, 1998), pp. 43–59.
  56. M. A. Johnson, N. Vardi, “Regional differences in GABA and GAD immunoreactivity in rabbit horizontal cells,” Visual Neurosci. 15, 743–753 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited