OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 597–606

Representation of cone signals in the primate retina

David J. Calkins  »View Author Affiliations

JOSA A, Vol. 17, Issue 3, pp. 597-606 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (1991 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Vision begins with specialized retinal circuits that encode diverse types of information. For Old World primates, these circuits sample three submosaics formed by cone photoreceptors sensitive to short, middle, and long wavelengths. For spatial acuity, the photon catch between any two cones is compared for discrimination of patterns as fine as the cone mosaic. For color vision, the photon catch between different cone types is compared for discrimination of fine spectral differences on the basis of hue. The retinal circuits for these two tasks differ at the synaptic level to form distinct representations of signals from the cone mosaic.

© 2000 Optical Society of America

OCIS Codes
(330.1070) Vision, color, and visual optics : Vision - acuity
(330.1720) Vision, color, and visual optics : Color vision
(330.4270) Vision, color, and visual optics : Vision system neurophysiology

Original Manuscript: June 17, 1999
Revised Manuscript: September 16, 1999
Manuscript Accepted: September 22, 1999
Published: March 1, 2000

David J. Calkins, "Representation of cone signals in the primate retina," J. Opt. Soc. Am. A 17, 597-606 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Williams, “Seeing through the photoreceptor mosaic,” Trends Neurosci. 9, 193–198 (1986). [CrossRef]
  2. Y. Tsukamoto, P. Masarachia, S. J. Schein, P. Sterling, “Gap junctions between the pedicles of macaque foveal cones,” Vision Res. 32, 1809–1815 (1992). [CrossRef] [PubMed]
  3. D. J. Calkins, P. Sterling, “Evidence that circuits for spatial and color vision segregate at the first retinal synapse,” Neuron 24, 313–321 (1999). [CrossRef] [PubMed]
  4. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).
  5. D. J. Calkins, S. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells via different numbers of excitatory synapses,” Nature 371, 70–72 (1994). [CrossRef] [PubMed]
  6. D. J. Calkins, Y. Tsukamoto, P. Sterling, “Foveal cones form basal as well as invaginating junctions with diffuse ON bipolar cells,” Vision Res. 36, 3373–3381 (1996). [CrossRef] [PubMed]
  7. D. J. Calkins, P. Sterling, “Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina,” Nature 381, 613–615 (1996). [CrossRef] [PubMed]
  8. D. J. Calkins, Y. Tsukamoto, P. Sterling, “Microcircuitry and mosaic of a blue/yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998). [PubMed]
  9. M. Chun, U. Grünert, P. Martin, H. Wässle, “The synaptic complex of cones in the fovea and the periphery of the macaque monkey retina,” Vision Res. 36, 3373–3381 (1996). [CrossRef]
  10. L. Missotten, The Ultrastructure of the Human Retina (Editions Arscia S.A., Brussels, 1965).
  11. J. E. Dowling, B. B. Boycott, “Organization of the primate retina: electron microscopy,” Proc. R. Soc. London Ser. B 166, 80–111 (1966). [CrossRef]
  12. H. Wässle, B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).
  13. J. M. Hopkins, B. B. Boycott, “The cone synapses of cone bipolar cells of primate retina,” J. Neurocytol. 26, 313–325 (1997). [CrossRef] [PubMed]
  14. H. Kolb, R. Nelson, “The organization of photoreceptor to bipolar synapses in the outer plexiform layer,” in Neurobiology and Clinical Aspects of the Outer Retina, M. B. A. Djamgoz, S. N. Archer, S. Vallerga, eds. (Chapman & Hall, London, 1995), pp. 273–296.
  15. H. Wässle, U. Grünert, P. R. Martin, B. B. Boycott, “Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina,” Vision Res. 34, 561–579 (1994). [CrossRef] [PubMed]
  16. H. Kolb, “Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells,” Philos. Trans. R. Soc. London Ser. B 258, 261–283 (1970). [CrossRef]
  17. Y. Tsukamoto, R. G. Smith, P. Sterling, “ ‘Collective coding’ of correlated cone signals in the retinal ganglion cell,” Proc. Natl. Acad. Sci. USA 87, 1860–1864 (1990). [CrossRef]
  18. S. L. Polyak, The Retina (U. Chicago Press, Chicago, Ill., 1941).
  19. H. Kolb, L. Dekorver, “Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions,” J. Comp. Neurol. 303, 617–636 (1991). [CrossRef] [PubMed]
  20. D. M. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993). [PubMed]
  21. J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992). [CrossRef] [PubMed]
  22. O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996). [PubMed]
  23. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000). [CrossRef]
  24. S. S. Herr, N. Tiv, K. Klug, S. J. Schein, P. Sterling, “L and M cones in macaque fovea make different numbers of synaptic contacts with OFF (but not ON) midget bipolar cells,” ARVO Abstr. 36, 2368 (1995).
  25. S. S. Herr, N. Tiv, P. Sterling, S. J. Schein, “S cones in macaque fovea are invaginated by one type of ON bipolar cell, but L and M cones are invaginated by midget and diffuse bipolar cells,” ARVO Abstr. 37, 4864 (1996).
  26. A. P. Mariani, “Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive,” Nature 308, 184–186 (1984). [CrossRef] [PubMed]
  27. N. Kouyama, D. W. Marshak, “Bipolar cells specific for blue cones in the macaque retina,” J. Neurosci. 12, 1233–1252 (1992). [PubMed]
  28. F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of rhesus monkey retina,” J. Physiol. (London) 251, 167–195 (1975).
  29. D. M. Dacey, B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994). [CrossRef] [PubMed]
  30. K. Klug, N. Tiv, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cones contact OFF-midget bipolar cells,” Soc. Neurosci. Abstr. 19, 351.7 (1992).
  31. K. Klug, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cone off-midget ganglion cells in macaque,” ARVO Abstr. 34, 1398 (1993).
  32. D. J. Calkins, “Synaptic organization of cone pathways in the primate retina,” in Color Vision: from Molecular Genetics to Perception, K. Gegenfurtner, L. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999).
  33. F. M. de Monasterio, “Properties of ganglion cells with atypical receptive-field organization in retina of macaques,” J. Neurophysiol. 41, 1435–1449 (1978). [PubMed]
  34. D. M. Dacey, “Morphology of a small field bistratified ganglion cell type in the macaque and human retina,” Visual Neurosci. 10, 1081–1098 (1993). [CrossRef]
  35. K. K. Ghosh, P. R. Martin, U. Grünert, “Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus,” J. Comp. Neurol. 379, 211–225 (1997). [CrossRef] [PubMed]
  36. L. N. Thibos, F. E. Cheney, D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987). [CrossRef] [PubMed]
  37. E. Kaplan, B. B. Lee, R. M. Shapley, “New views of primate retinal function,” in Progress in Retinal Research, N. Osborne, J. Chader, eds. (Pergamon, Oxford, UK, 1990), Vol. 9, pp. 273–336.
  38. R. L. De Valois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision. III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974). [CrossRef] [PubMed]
  39. D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.
  40. B. B. Boycott, J. M. Hopkins, H. G. Sperling, “Cone connections of the horizontal cells of the rhesus monkey’s retina,” Proc. R. Soc. London Ser. B 229, 345–379 (1987). [CrossRef]
  41. R. F. Dacheux, E. Raviola, “Physiology of H1 horizontal cells in the primate retina,” Proc. R. Soc. London Ser. B 239, 213–230 (1990). [CrossRef]
  42. D. M. Dacey, B. B. Lee, D. K. Stafford, J. Pokorny, V. C. Smith, “Horizontal cells of the primate retina: cone specificity without spectral opponency,” Science 271, 656–659 (1996). [CrossRef] [PubMed]
  43. D. Osorio, T. R. J. Bossomaier, “Human cone-pigment spectral sensitivities and the reflectances of natural surfaces,” Biol. Cybern. 67, 217–222 (1992). [CrossRef] [PubMed]
  44. M. G. Nagle, D. Osorio, “The tuning of human photopigments may minimize red–green chromatic signals in natural conditions,” Proc. R. Soc. London Ser. B 252, 209–213 (1993). [CrossRef]
  45. L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957). [CrossRef] [PubMed]
  46. E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow cancellation and the site of chromatic antagonism in the π1 pathway,” Vision Res. 20, 779–788 (1980). [CrossRef]
  47. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions in color space,” Vision Res. 22, 1123–1131 (1982). [CrossRef]
  48. R. W. Rodieck, “Which cells code for color?” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 83–93.
  49. N. Sekiguchi, D. R. Williams, D. H. Brainard, “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993). [CrossRef]
  50. C. Noorlander, J. J. Koenderink, R. J. Den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983). [CrossRef] [PubMed]
  51. R. F. Hess, K. T. Mullen, E. Zrenner, “Human photopic vision with only short wavelength cones post-receptoral properties,” J. Physiol. (London) 417, 151–172 (1989).
  52. E. J. Chichilnisky, D. A. Baylor, “Single S cone inputs to blue-on ganglion cells in monkey retina,” ARVO Abstr. 40, 3096 (1999).
  53. D. R. Williams, N. Sekiguchi, D. H. Brainard, “Color, contrast sensitivity, and the cone mosaic,” Proc. Natl. Acad. Sci. USA 90, 9770–9777 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited