OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 607–614

Functional consequences of the relative numbers of L and M cones

David H. Brainard, Austin Roorda, Yasuki Yamauchi, Jack B. Calderone, Andrew Metha, Maureen Neitz, Jay Neitz, David R. Williams, and Gerald H. Jacobs  »View Author Affiliations


JOSA A, Vol. 17, Issue 3, pp. 607-614 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000607


View Full Text Article

Acrobat PDF (173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Direct imaging of the retina by adaptive optics allows assessment of the relative number of long-wavelength-sensitive (L) and middle-wavelength-sensitive (M) cones in living human eyes. We examine the functional consequences of variation in the relative numbers of L and M cones (L/M cone ratio) for two observers whose ratios were measured by direct imaging. The L/M cone ratio for the two observers varied considerably, taking on values of 1.15 and 3.79. Two sets of functional data were collected: spectral sensitivity measured with the flicker electroretinogram (ERG) and the wavelength of unique yellow. A genetic analysis was used to determine L and M cone spectra appropriate for each observer. Rayleigh matches confirmed the use of these spectra. We determined the relative strength of L and M cone contributions to ERG spectral sensitivity by fitting the data with a weighted sum of L and M cone spectra. The relative strengths so determined (1.06 and 3.38) were close to the cone ratios established by direct imaging. Thus variation in L/M cone ratio is preserved at the sites tapped by the flicker ERG. The wavelength of unique yellow varied only slightly between the two observers (576.8 and 574.7 nm). This small variation indicates that neural factors play an important role in stabilizing unique yellow against variation in the L/M cone ratio.

© 2000 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5510) Vision, color, and visual optics : Psychophysics

Citation
David H. Brainard, Austin Roorda, Yasuki Yamauchi, Jack B. Calderone, Andrew Metha, Maureen Neitz, Jay Neitz, David R. Williams, and Gerald H. Jacobs, "Functional consequences of the relative numbers of L and M cones," J. Opt. Soc. Am. A 17, 607-614 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-3-607


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. E. Marc and H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
  2. F. M. de Monasterio, E. P. McCrane, J. K. Newlander, and S. J. Schein, “Density profile of blue-sensitive cones along the horizontal meridian of macaque retina,” Invest. Ophthalmol. Visual Sci. 26, 289–302 (1985).
  3. P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
  4. P. K. Ahnelt, C. Keri, and R. Pflug, “Identification of pedicles of putative blue-sensitive cones in human retina,” J. Comp. Neurol. 293, 39–53 (1990).
  5. K. C. Wikler and P. Rakic, “Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates,” J. Neurosci. 10, 3390–3401 (1990).
  6. C. M. Diaz-Araya, J. M. Provis, and F. A. Billson, “NADPH-diaphorase histochemistry reveals cone distributions in adult human retinae,” Aust. NZ J. Ophthalmol. 21, 171–179 (1993).
  7. C. A. Curcio, K. Allen, K. Sloan, C. Lerea, I. Klock, and A. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
  8. J. D. Mollon and J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
  9. K. Bumsted and A. Hendrickson, “Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea,” J. Comp. Neurol. 403, 502–516 (1999).
  10. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
  11. D. Williams, D. I. A. MacLeod, and M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
  12. D. Williams, D. I. A. MacLeod, and M. Hayhoe, “Punctate sensitivity of the blue sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
  13. D. R. Williams and R. J. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385–387 (1983).
  14. S. A. Hagstrom, “Characterization of cone pigment genes expressed in human retina and in individual cone photoreceptors,” Ph.D. dissertation (Medical College of Wisconsin, Milwaukee, Wis., 1995).
  15. S. A. Hagstrom, J. Neitz, and M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997).
  16. S. A. Hagstrom, J. Neitz, and M. Neitz, “Variations in cone populations for red–green color vision examined by analysis of mRNA,” NeuroReport 9, 1963–1967 (1998).
  17. Further information can be provided by J. Neitz, who performed work in this regard during 1999 at the Medical College of Wisconsin. He can be reached at the address on the title page.
  18. W. A. H. Rushton and H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
  19. T. T. J. M. Berenschot, J. van de Kraats, and D. van Norren, “Foveal cone mosaic and visual pigment density in dichromats,” J. Physiol. (London) 492, 307–314 (1996).
  20. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  21. H. L. De Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1947).
  22. J. Pokorny, V. C. Smith, and M. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg and B. B. Lee, eds. (Plenum, New York, 1991), pp. 23–34.
  23. J. J. Kremers, H. P. Scholl, H. Knau, T. T. J. M. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
  24. G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer, Dordrecht, The Netherlands, 1993), pp. 107–112.
  25. G. H. Jacobs and J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997).
  26. T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone ERG in dichromats and trichromats,” Vision Res. 38, 3391–3396 (1998).
  27. J. J. Kremers, T. Usui, H. P. Scholl, and L. T. Sharpe, “Cone signal contributions to electrograms in dichromats and trichromats,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).
  28. D. H. Brainard, J. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Invest. Ophthalmol. Visual Sci. 40, 2840–2847 (1999).
  29. C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Farbe 34, 59–66 (1987).
  30. J. Pokorny and V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53–57 (1987).
  31. E. Miyahara, J. Pokorny, V. C. Smith, and R. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
  32. C. M. Cicerone and J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 26, 115–128 (1989).
  33. R. L. P. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
  34. M. F. Wesner, J. Pokorny, S. K. Shevell, and V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
  35. J. Krauskopf, “Color appearance of small stimuli and the spatial distribution of color receptors,” J. Opt. Soc. Am. 54, 1171 (1964).
  36. J. Krauskopf and R. Srebro, “Spectral sensitivity of color mechanisms: derivation from fluctuations of color appearance near threshold,” Science 150, 1477–1479 (1965).
  37. P. D. Gowdy and C. M. Cicerone, “The spatial arrangement of the L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
  38. P. Lennie, P. W. Haake, and D. R. Williams, “The design of chromatically opponent receptive fields,” in Computational Models of Visual Processing, M. S. Landy and J. A. Mov- shon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 71–82.
  39. J. Verweij, L. C. Diller, D. R. Williams, and D. M. Dacey, “The relative strength of L and M cone inputs to H1 horizontal cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S240 (1999).
  40. L. C. Diller, J. Verweij, D. R. Williams, and D. M. Dacey, “L and M cone inputs to peripheral parasol and midget ganglion cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, S817 (1999).
  41. J. Liang, D. R. Williams, and D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
  42. T. W. Kraft, J. Neitz, and M. Neitz, “Spectra of human L cones,” Vision Res. 38, 3663–3670 (1998).
  43. M. Neitz, J. Neitz, and A. Grishok, “Polymorphism in the number of genes encoding long-wavelength-sensitive cone pigments among males with normal color vision,” Vision Res. 35, 2395–2407 (1995).
  44. A. B. Asenjo, J. Rim, and D. D. Oprian, “Molecular determinants of human red/green colour discrimination,” Neuron 12, 1131–1138 (1994).
  45. S. L. Merbs and J. Nathans, “Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments,” Photochem. Photobiol. 58, 706–710 (1993).
  46. M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red–green color vision,” Science 252, 971–973 (1991).
  47. S. C. Merbs and J. Nathans, “Absorption spectra of human cone photopigments,” Nature 356, 433–435 (1992).
  48. Further information can be provided by G. H. Jacobs, who performed work in this regard during the period 1990–1998 at the University of California, Santa Barbara. He can be reached at the address on the title page.
  49. L. T. Sharpe, A. Stockman, H. Jagle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
  50. S. M. Dawis, “Polynomial expressions of pigment nomograms,” Vision Res. 21, 1427–1430 (1981).
  51. E. F. MacNichol, Jr., “A unifying presentation of photopigment spectra,” Vision Res. 26, 1543–1556 (1986).
  52. R. J. W. Mansfield, “Primate cone photopigments and cone mechanisms,” in The Visual System, A. Fein and J. S. Levine, eds. (Liss, New York, 1985), pp. 89–106.
  53. G. H. Jacobs and J. B. Calderone, “Evaluation of the genetic contribution to individual variations in the spectral sensitivity of deuteranopes,” in John Dalton’s Colour Vision Legacy, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, London, 1997), pp. 47–54.
  54. J. Neitz and G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vision Res. 30, 621–636 (1990).
  55. G. H. Jacobs, J. Neitz, and K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996).
  56. W. W. Dawson, G. L. Trick, and C. Litzkow, “An improved electrode for electroretinography,” Invest. Ophthalmol. Visual Sci. 19, 988–991 (1979).
  57. For observer AN, three rather than two equations were obtained at 640 nm.
  58. M. Kalloniatis and M. J. Pianta, “L and M cone input into spectral sensitivity functions: a reanalysis,” Vision Res. 37, 799–811 (1997).
  59. M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
  60. D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).
  61. V. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
  62. P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
  63. Y. Chang, S. A. Burns, and M. R. Krietz, “Red–green flicker photometry and nonlinearities in the flicker electroretinogram,” J. Opt. Soc. Am. A 10, 1413–1422 (1993).
  64. G. R. Cole, T. Hine, and W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited