OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 615–627

L and M cone relative numerosity and red–green opponency from fovea to midperiphery in the human retina

Shiro Otake and Carol M. Cicerone  »View Author Affiliations

JOSA A, Vol. 17, Issue 3, pp. 615-627 (2000)

View Full Text Article

Acrobat PDF (233 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The relative numerosity of the long-wavelength-sensitive (L) and middle-wavelength-sensitive (M) cones and the red–green color appearance, as assessed by means of unique yellow, are stable from fovea to midperiphery (±28 deg nasotemporal). As foveal tests decrease in size, unique yellow progressively shifts toward longer wavelengths, favoring a model of red–green opponency carried by cells whose centers receive input from either L or M cones and whose surrounds receive mixed contributions from both. Individual differences in unique yellow over a 20-nm range and the relative numerosity of L and M cones can be linked by means of this model, suggesting that the relative number of L and M cones is a factor that regulates individual variations in red–green color appearance.

© 2000 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5510) Vision, color, and visual optics : Psychophysics

Shiro Otake and Carol M. Cicerone, "L and M cone relative numerosity and red–green opponency from fovea to midperiphery in the human retina," J. Opt. Soc. Am. A 17, 615-627 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. Østerberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. Suppl. 6, 1–102 (1935).
  2. C. A. Curcio, K. R. Sloan, Jr., O. Packer, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
  3. P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue-sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
  4. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue,” J. Comp. Neurol. 312, 610–624 (1991).
  5. D. R. Williams, D. I. A. MacLeod, and M. M. Hayhoe, “Punctuate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
  6. J. A. Castano and H. G. Sperling, “Sensitivity of the blue-sensitive cones across the central retina,” Vision Res. 22, 661–673 (1982).
  7. R. E. Marc and H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
  8. F. M. de Monasterio, E. P. McCrane, J. K. Newlander, and S. J. Schein, “Density profile of blue-sensitive cones along the horizontal meridian of macaque retina,” Invest. Ophthalmol. Visual Sci. 26, 289–302 (1985).
  9. J. D. Mollon and J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
  10. O. S. Packer, D. R. Williams, and D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
  11. H. L. De Vries, “The heredity of the relative number of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).
  12. W. A. H. Rushton and H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
  13. J. J. Vos and P. L. Walraven, “On the derivation of the foveal cone primaries,” Vision Res. 11, 799–818 (1971).
  14. R. L. P. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
  15. C. M. Cicerone and J. L. Nerger, “The relative number of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
  16. C. M. Cicerone, “Color appearance and the cone mosaic in trichromacy and dichromacy,” in Color Vision Deficiencies, Y. Ohta, ed. (Kugler & Ghedini, Amsterdam, 1990), pp. 1–2.
  17. J. L. Nerger and C. M. Cicerone, “The ratio of L to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992).
  18. G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Color Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 107–112.
  19. P. D. Gowdy and C. M. Cicerone, “The spatial arrangement of L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
  20. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
  21. S. A. Hagstrom, M. Neitz, and J. Neitz, “Variations in cone populations for red–green color vision examined by analysis of mRNA,” NeuroReport 9, 1963–1967 (1998).
  22. J. D. Moreland and A. Cruz, “Colour perception with the peripheral retina,” Opt. Acta 6, 117–151 (1959).
  23. M. M. Connors and J. A. S. Kinney, “Relative red–green sensitivity as a function of retinal position,” J. Opt. Soc. Am. 52, 81–84 (1962).
  24. R. M. Boynton, W. Schafer, and M. A. Neun, “Hue–wavelength relation measured by color-naming method for three retina locations,” Science 146, 666–668 (1964).
  25. H. Uchikawa, P. K. Kaiser, and K. Uchikawa, “Color-discrimination perimetry,” Color Res. Appl. 7, 264–272 (1982).
  26. B. R. Wooten and G. Wald, “Color-vision mechanisms in the peripheral retinas of normal and dichromatic observers,” J. Gen. Physiol. 61, 125–145 (1973).
  27. U. Stabell and B. Stabell, “Color-vision mechanisms of the extrafoveal retina,” Vision Res. 24, 1969–1975 (1984).
  28. U. Stabell and B. Stabell, “Color-vision in the peripheral retina under photopic conditions,” Vision Res. 22, 839–844 (1982).
  29. C. Noorlander, J. J. Koenderink, R. J. Den Ouden, and B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
  30. I. Abramov, J. Gordon, and H. Chan, “Color appearance in the peripheral retina: effect of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991).
  31. H. Hibino, “Red–green and yellow–blue opponent-color responses as a function of retinal eccentricity,” Vision Res. 32, 1955–1964 (1992).
  32. J. L. Nerger, V. Volbrecht, and C. J. Ayde, “Unique hue judgments as a function of test size in the fovea and at 20-deg temporal eccentricity,” J. Opt. Soc. Am. A 12, 1225–1232 (1995).
  33. J. A. Van Esch, E. E. Koldenhof, A. J. Van Doorn, and J. J. Koenderink, “Spectral sensitivity and wavelength discrimination of the human peripheral visual field,” J. Opt. Soc. Am. A 1, 443–450 (1984).
  34. H. L. De Vries, “Luminosity curve of trichromats,” Nature (London) 157, 736–737 (1946).
  35. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
  36. A. Eisner and D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980).
  37. J. Pokorny and V. C. Smith, “Evaluation of single pigment shift model of anomalous trichromacy,” J. Opt. Soc. Am. 67, 1196–1209 (1977).
  38. J. D. Mollon, “Color vision,” Annu. Rev. Psychol. 33, 41–85 (1982).
  39. D. I. A. MacLeod, “Receptoral constraints on color vision,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson and S. Zeki, eds. (Macmillan, London, 1985), pp. 103–116.
  40. R. Navarro, P. Artal, and D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
  41. F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).
  42. M. Alpern, “Rhodopsin kinetics in the human eye,” J. Physiol. (London) 217, 447–471 (1971).
  43. B. Sakitt, “Counting every quantum,” J. Physiol. (London) 223, 513–529 (1972).
  44. W. Makous, “Absolute sensitivity,” in Night Vision, R. F. Hess, L. T. Sharpe, and K. Nordby, eds. (Cambridge U. Press, Cambridge, UK, 1990), pp. 146–176.
  45. J. Nachmias, “On the psychometric function for contrast detection,” Vision Res. 21, 215–223 (1981).
  46. D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508–1532 (1985).
  47. D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).
  48. D. Jameson and L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
  49. D. H. Krantz, “Color measurement and color theory. Opponent-colors theory,” J. Math. Psychol. 12, 304–327 (1975).
  50. J. Larimer, D. H. Krantz, and C. M. Cicerone, “Opponent-process additivity. I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
  51. T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
  52. D. M. Dacey, “Circuitry for color coding in the primate retina,” Proc. Natl. Acad. Sci. USA 93, 582–588 (1996).
  53. J. Mollon, “Color vision: opsins and options,” Proc. Natl. Acad. Sci. USA 96, 4743–4745 (1999).
  54. R. C. Reid and R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature 356, 716–718 (1992).
  55. T. Yeh, B. B. Lee, and J. Kremers, “Temporal response of ganglion cells of the macaque retina to cone-specific modulation,” J. Opt. Soc. Am. A 12, 456–464 (1995).
  56. W. Paulus and A. Kroger-Paulus, “A new concept of retinal colour coding,” Vision Res. 23, 529–540 (1983).
  57. R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
  58. P. Lennie, P. W. Haake, and D. R. Williams, “The design of chromatically opponent receptive fields,” in Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 71–82.
  59. D. J. Calkins, S. J. Schein, Y. Tsukamoto, and P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
  60. D. M. Dacey and M. R. Petersen, “Dendritic field size and morphology of midget and parasol ganglion cells of the human retina,” Proc. Natl. Acad. Sci. USA 89, 9666–9670 (1992).
  61. H. Wässle, B. B. Boycott, and J. Rohrenbeck, “Horizontal cells in the monkey retina: cone connections and dendritic network,” Eur. J. Neurosci. 1, 421–435 (1989).
  62. D. M. Purdy, “The Bezold–Brücke phenomenon and contours of constant hue,” Am. J. Psychol. 49, 313–315 (1937).
  63. A. L. Nagy and J. L. Zacks, “The effects of psychophysical procedure and stimulus duration in the measurement of Bezold–Brücke hue shifts,” Vision Res. 17, 193–200 (1977).
  64. J. S. Werner and B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
  65. J. Larimer, “Red/green opponent colors equilibria measured on chromatic adapting fields: evidence for gain changes and restoring forces,” Vision Res. 21, 501–512 (1981).
  66. C. M. Cicerone, “Constraints placed on color vision models by the relative number of different cone classes in human fovea centralis,” Farbe 34, 59–66 (1987).
  67. D. I. A. MacLeod and M. A. Webster, “Factors influencing the color matches of normal observers,” in Colour Vision, J. D. Mollon and L. T. Sharpe, eds. (Academic, London, 1983), pp. 81–92.
  68. J. L. Schnapf, T. Kraft, and D. A. Baylor, “Spectral sensitivities of human cone photoreceptors,” Nature 325, 439–441 (1987).
  69. S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356, 433–435 (1992).
  70. E. Zrenner and P. Gouras, “Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina,” in Colour Vision, J. D. Mollon and L. T. Sharpe, eds. (Academic, London, 1983), pp. 211–224.
  71. M. Alpern and E. N. Pugh, Jr., “Variation in the action spectrum of erythrolabe among deuteranopes,” J. Physiol. (London) 266, 613–646 (1977).
  72. M. Alpern and T. Wake, “Cone pigments in human deutan colour vision defects,” J. Physiol. (London) 266, 595–612 (1977).
  73. J. Neitz and G. H. Jacobs, “Polymorphism in normal human color vision and its mechanisms,” Vision Res. 30, 621–636 (1990).
  74. J. Neitz, M. Neitz, and G. H. Jacobs, “More than three different cone pigments among people with normal color vision,” Vision Res. 33, 117–122 (1993).
  75. J. K. Bowmaker and H. J. A. Dartnall, “Visual pigments of rods and cones in a human retina,” J. Physiol. (London) 298, 501–511 (1980).
  76. H. J. A. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Microspectrophotometry of human photoreceptors,” in Colour Vision, J. D. Mollon and L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80.
  77. J. D. Mollon and G. Jordan, “Is unique yellow related to the relative numerosity of the L and M cones?” Invest. Ophthalmol. Visual Sci. Suppl. 36, S189 (1995).
  78. E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
  79. A. Chaparro, C. F. Stromeyer III, R. E. Kronauer, and R. T. Eskew, Jr., “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
  80. M. J. Sankeralli and K. T. Mullen, “Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms,” J. Opt. Soc. Am. A 13, 906–915 (1996).
  81. J. E. Thornton and E. N. Pugh, Jr., “Red/green opponency at detection threshold,” Science 219, 191–193 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited