OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 635–640

Cost of cone coupling to trichromacy in primate fovea

Andrew Hsu, Robert G. Smith, Gershon Buchsbaum, and Peter Sterling  »View Author Affiliations


JOSA A, Vol. 17, Issue 3, pp. 635-640 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000635


View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cone synaptic terminals couple electrically to their neighbors. This reduces the amplitude of temporally uncorrelated voltage differences between neighbors. For an achromatic stimulus coarser than the cone mosaic, the uncorrelated voltage difference between neighbors represents mostly noise; so noise is reduced more than the signal. Here coupling improves signal-to-noise ratio and enhances contrast sensitivity. But for a chromatic stimulus the uncorrelated voltage difference between neighbors of different spectral type represents mostly signal; so signal would be reduced more than the noise. This cost of cone coupling to encoding chromatic signals was evaluated using a compartmental model of the foveal cone array. When cones sensitive to middle (M) and long (L) wavelengths alternated regularly, and the conductance between a cone and all of its immediate neighbors was 1000 pS (∼2 connexons/cone pair), coupling reduced the difference between the L and M action spectra by nearly fivefold, from about 38% to 8%. However, L and M cones distribute randomly in the mosaic, forming small patches of like type, and within a patch the responses to a chromatic stimulus are correlated. In such a mosaic, coupling still reduced the difference between the L and M action spectra, but only by 2.4-fold, to about 18%. This result is independent of the L/M ratio. Thus “patchiness” of the L/M mosaic allows cone coupling to improve achromatic contrast sensitivity while minimizing the cost to chromatic sensitivity.

© 2000 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6180) Vision, color, and visual optics : Spectral discrimination

History
Original Manuscript: June 28, 1999
Revised Manuscript: November 11, 1999
Manuscript Accepted: November 17, 1999
Published: March 1, 2000

Citation
Andrew Hsu, Robert G. Smith, Gershon Buchsbaum, and Peter Sterling, "Cost of cone coupling to trichromacy in primate fovea," J. Opt. Soc. Am. A 17, 635-640 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-3-635


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Baylor, M. G. F. Fuortes, P. M. O’Bryan, “Receptive fields of cones in the retina of the turtle,” J. Physiol. (London) 214, 265–294 (1971).
  2. T. D. Lamb, E. J. Simon, “The relation between intercellular coupling and electrical noise in turtle photoreceptors,” J. Physiol. (London) 263, 257–286 (1976).
  3. M. Tessier-Lavigne, D. Attwell, “The effect of photoreceptor coupling and synapse nonlinearity on signal: noise ratio in early visual processing,” Proc. R. Soc. London Ser. B. 234, 171–197 (1988). [CrossRef]
  4. H. Kolb, “The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations,” J. Neurocytol. 6, 131–153 (1977). [CrossRef] [PubMed]
  5. P. Sterling, M. A. Freed, R. G. Smith, “Architecture of the rod and cone circuits to the On-beta ganglion cell,” J. Neurosci. 8, 623–642 (1988). [PubMed]
  6. E. Raviola, N. B. Gilula, “Gap junctions between photoreceptor cells in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 70, 1677–1681 (1973). [CrossRef] [PubMed]
  7. Y. Tsukamoto, P. Masarachia, S. J. Schein, P. Sterling, “Gap junctions between the pedicles of macaque foveal cones,” Vision Res. 32, 1809–1815 (1992). [CrossRef] [PubMed]
  8. A. Hsu, L. Hahn, G. Buchsbaum, P. Sterling are preparing a manuscript entitled, “Why cones in the human fovea are electrically coupled.”
  9. R. G. Smith, “NeuronC: a computational language for investigating functional architecture of neural circuits,” J. Neurosci. Methods 43, 83–108 (1992). [CrossRef] [PubMed]
  10. D. M. Schneeweis, J. L. Schnapf, “Photovoltage of rods and cones in the macaque retina,” Science 268, 1053–1056 (1995). [CrossRef] [PubMed]
  11. D. Johnston, T. H. Brown, “Interpretation of voltage-clamp measurements in hippocampal neurons,” J. Neurophysiol. 50, 464–486 (1983). [PubMed]
  12. D. Attwell, F. S. Werblin, M. Wilson, “The properties of single cones isolated from the tiger salamander retina,” J. Physiol. (London) 328, 259–283 (1982).
  13. E. M. Lasater, R. A. Normann, H. Kolb, “Signal integration at the pedicle of turtle cone photoreceptors: an anatomical and electrophysiological study,” Visual Neurosci. 2, 553–564 (1989). [CrossRef]
  14. J. J. B. Jack, D. Noble, R. W. Tsien, Electric Current Flow in Excitable Cells (Clarendon, Oxford, UK, 1988).
  15. A. Hsu, Y. Tsukamoto, R. G. Smith, P. Sterling, “Functional architecture of primate rod and cone axons,” Vision Res. 38, 2539–2549 (1998). [CrossRef]
  16. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).
  17. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991). [CrossRef] [PubMed]
  18. J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992). [CrossRef] [PubMed]
  19. D. C. Spray, E. Scemes, R. Rozental, in Fundamental Neuroscience, M. Zigmond, F. E. Bloom, S. C. Landis, J. L. Roberts, L. R. Squire, eds. (Academic, San Diego, Calif., 1999), pp. 317–343.
  20. S. H. De Vries, Houston Medical School, University of Texas, Houston, Tex. 77030 (personal communication, 1999).
  21. N. Sekiguchi, D. R. Williams, D. H. Brainard, “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993). [CrossRef]
  22. D. J. Calkins, Y. Tsukamoto, P. Sterling, “Microcircuitry and mosaic of a blue/yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998). [PubMed]
  23. P. Ahnelt, C. Keri, H. Kolb, “Identification of pedicles of putative blue-sensitive cones in the human retina,” J. Comp. Neurol. 293, 39–53 (1990). [CrossRef] [PubMed]
  24. D. J. Calkins, S. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells via different numbers of excitatory synapses,” Nature 371, 70–72 (1994). [CrossRef] [PubMed]
  25. C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989). [CrossRef] [PubMed]
  26. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef] [PubMed]
  27. M. Neitz, J. Neitz, G. H. Jacobs, “Spectral tuning of pigments underlying red–green color vision,” Science 252, 971–974 (1991). [CrossRef] [PubMed]
  28. S. B. Balding, S. A. Sjoberg, M. Neitz, J. Neitz, “Real time PCR method to accurately quantitate L and M cone pigment gene expression,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 959 (1998).
  29. S. A. Hagstrom, J. Neitz, M. Neitz, “Variations in cone populations for red–green color vision examined by analysis of mRNA,” NeuroReport 9, 1963–1967 (1998). [CrossRef] [PubMed]
  30. D. M. Schneeweis, J. L. Schnapf, “The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics,” J. Neurosci. 19, 1203–1216 (1999). [PubMed]
  31. E. N. Pugh, J. D. Mollon, “A theory of the π1 and π3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979). [CrossRef]
  32. T. W. Kraft, J. Neitz, M. Neitz, “Spectra of human L cones,” Vision Res. 38, 3663–3670 (1998). [CrossRef]
  33. D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited