OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 4 — Apr. 1, 2000
  • pp: 677–686

Daylight, biochrome surfaces, and human chromatic response in the Fourier domain

Valérie Bonnardel and Laurence T. Maloney  »View Author Affiliations

JOSA A, Vol. 17, Issue 4, pp. 677-686 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (380 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We first report Fourier analyses of a collection of 348 daylight spectral power distributions and 1695 biochrome surface reflectance functions. The power spectra of the daylights are low pass with more than 99% of spectral power below 1 cycle/300 nm and 99.9% below 3 cycles/300 nm. The power spectra of reflectance functions are also low pass with more than 99% of spectral power below 4 cycles/300 nm and 99.9% below 11 cycles/300 nm. Consequently, the resulting color signals are typically low pass with, for our samples, an estimated frequency cutoff of 5 cycles/300 nm. Theoretical and experimental data concerning human chromatic response in the frequency domain show that this limit corresponds to the highest frequency that the color system can resolve. The implications for normal and abnormal human color vision are discussed.

© 2000 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(330.4060) Vision, color, and visual optics : Vision modeling

Original Manuscript: June 17, 1999
Revised Manuscript: November 9, 1999
Manuscript Accepted: November 18, 1999
Published: April 1, 2000

Valérie Bonnardel and Laurence T. Maloney, "Daylight, biochrome surfaces, and human chromatic response in the Fourier domain," J. Opt. Soc. Am. A 17, 677-686 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Biochrome surfaces include two categories of biological colorations that involve two different processes: pigmentary colors result from selective absorption of light by pigments, and schemochrome colors result from selective reflection of light by scattering, interference, or diffraction. See Ref. 13 below.
  2. L. T. Maloney, “Physics-based approaches to modeling surface color perception,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999).
  3. L. T. Maloney, B. A. Wandel, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986). [CrossRef] [PubMed]
  4. J. Cohen, “Dependency of spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964). [CrossRef]
  5. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1681 (1986). [CrossRef] [PubMed]
  6. K. L. Kelley, K. S. Gibson, D. Nickerson, “Tristimulus specification of the Munsell Book of Color from spectrophotometric measurements,” J. Opt. Soc. Am. 33, 355–376 (1943). [CrossRef]
  7. E. L. Krinov, Spectral Reflectance Properties of Natural Formations, (National Research Council of Canada, Ottawa, 1947).
  8. J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989). [CrossRef]
  9. M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).
  10. D. B. Judd, D. L. MacAdam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964); S. R. Das, V. D. P. Sastri, “Spectral distribution and color of tropical daylight,” J. Opt. Soc. Am. 55, 319–323 (1965); V. D. P. Sastri, S. R. Das, “Spectral distribution and color of north sky at Delhi,” J. Opt. Soc. Am. 56, 829–830 (1966); V. D. P. Sastri, S. R. Das, “Typical spectra distributions and color for tropical daylight,” J. Opt. Soc. Am. 58, 391–398 (1968); E. R. Dixon, “Spectral distribution of Australian daylight,” J. Opt. Soc. Am. 68, 437–450 (1978). [CrossRef]
  11. J. Romero, A. Garcia-Beltran, J. Hernandez-Andres, “Linear bases for representation of natural and artificial illuminants,” J. Opt. Soc. Am. A 14, 1007–1014 (1997). [CrossRef]
  12. J. H. van Hateren, “Spatial, temporal and spectral pre-processing for color vision,” Proc. R. Soc. London Ser. B 251, 61–68 (1993). [CrossRef]
  13. K. Nassau, The Physics and Chemistry of Color: The Fifteen Causes of Color (Wiley, New York, 1983).
  14. W. S. Stiles, G. Wyszecki, N. Ohta, “Counting metameric object-color stimuli using frequency-limited spectral reflectance functions,” J. Opt. Soc. Am. 67, 779–784 (1977). [CrossRef]
  15. Note that the two last terms correspond to the terms “comb-filtered-spectra” and “comb-frequency” introduced by Barlow (Ref. 18 below). Comb-filtered spectra are sinusoidal spectral modulations analogous to spatial-frequency gratings used to determine the contrast sensitivity function of the visual system in the spatial domain.
  16. The natural unit for the F power density spectrum of a spectral reflectance function plotted against wavelength in nanometers is cycles/nanometer. The resulting numbers are small and difficult to interpret. As we are concerned mainly with the human visible spectrum, we report results for F power density spectra of spectral reflectance functions in units of cycles/300 nm, cycles across a nominal human visible spectrum.
  17. R. Bracewell, The Fourier Transform and Its Application (McGraw-Hill, New York, 1965).
  18. H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982). [CrossRef] [PubMed]
  19. F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 130, 35–44 (1963).
  20. V. Bonnardel, H. Bellemare, J. D. Mollon, “Measurements of human sensitivity to comb-filtered spectra,” Vision Res. 36, 2713–2720 (1996). [CrossRef] [PubMed]
  21. L. Chittka, “Optimal sets of color receptors and color opponent systems for coding of natural objects in insect vision,” J. Theor. Biol. 181, 179–196 (1996). [CrossRef]
  22. L. Chittka, A. Shmida, N. Troje, R. Menzel, “Ultraviolets as a component of flower reflections, and the color perception of hymenoptera,” Vision Res. 34, 1489–1508 (1994). [CrossRef] [PubMed]
  23. L. Chittka, R. Menzel, “The evolutionary adaptation of flower colors and the insect pollinators’ color vision system,” J. Comp. Physiol. A 171, 171–181 (1992). [CrossRef]
  24. B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Frugivory and color vision in Alouatta seniculus, a trichromatic plathyrrhine monkey,” Vision Res. 38, 3321–3329 (1998). [CrossRef]
  25. A first analysis performed on each of the data collections (results not shown) indicates that 0.985 to 0.998 of the relative energy falls below at 6 c/300 nm. High F frequencies due to noise in the spectral measurements may have led us to underestimate the amount of energy recovered at this limit. A second set of values was computed from the mean cumulative F power density spectra truncated at 15 c/300 nm. Furthermore, in order to discount the possibility that the higher F-frequency cutoff is somehow introduced by including the near-ultraviolet spectrum in the analyses, we used only data from 400–700 nm in the analyses.
  26. M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997). [CrossRef]
  27. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef] [PubMed]
  28. The letters S-, M-, and L- refer to the short-, medium-, and long-wavelength cone fundamentals.
  29. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigment between 400 and 500 nm,” Vision Res. 15, 161–171 (1975). [CrossRef] [PubMed]
  30. This resolution is obtained by extending the SSR function to 3000 points on the short-wavelength side.
  31. G. Buchsbaum, A. Gottschalk, “Chromaticity coordinates of frequency-limited functions,” J. Opt. Soc. Am. A 1, 885–887 (1984); G. Buchsbaum, “Chromaticity coordinates of frequency-limited functions: erratum,” J. Opt. Soc. Am. A 2, 95 (1985). [CrossRef] [PubMed]
  32. J. Romero, L. Jiménez del Barco, E. Hita, “Mathematical reconstruction of color-matching functions,” J. Opt. Soc. Am. A 9, 25–29 (1992). [CrossRef]
  33. V. Bonnardel, E. M. Valero, “Discrimination ellipses of deuteranomalous observers plotted in a personalised color diagram,” Perception 28, 70 (1999).
  34. J. Romero, J. A. Garcia, E. Valero, J. L. Nieves, “Measurements of the spectral modulation sensitivity function for two normal observers with CRT monitors,” J. Opt. (Paris) 28, 190–198 (1997). [CrossRef]
  35. The Weber fraction for the three classes of receptors (L, M, S) are computed for F frequencies varying from 0.1 to 6 c (0.1 c) step and for phase from 0 to 330° (with 30° steps). For each phase the value for the optimal phase only is plotted.
  36. J. D. Mollon, “‘Tho’ she kneel’d in that place where they grew…’,” J. Exp. Biol. 146, 21–38 (1989). [PubMed]
  37. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  38. L. M. Hurvich, D. Jameson, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955); L. M. Hurvich, D. Jameson, “Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision,” J. Opt. Soc. Am. 45, 602–616 (1955). [CrossRef] [PubMed]
  39. J. S. Werner, B. R. Wooten, “Opponent-chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979); S. Takahasi, Y. Ejima, M. Akita, “Effect of light adaptation on the perceptual red–green and yellow–blue opponent-color responses,” J. Opt. Soc. Am. A 2, 705–712 (1985); K. Shinomori, L. Spillmann, J. S. Werner, “S-cone signals to temporal OFF-channels: asymmetrical connections to postreceptoral chromatic mechanisms,” Vision Res. 39, 39–49 (1999). [CrossRef] [PubMed]
  40. J. Krauskopf, D. R. Williams, D. W. Heely, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982);R. G. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993); M. J. Sankeralli, K. T. Mullen, “Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms,” J. Opt. Soc. Am. A 13, 906–915 (1996). [CrossRef] [PubMed]
  41. C. R. Ingling, B. H.-P. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977). [CrossRef] [PubMed]
  42. The notation [L + M]-S refers to a hypothetical mechanism whose excitation is a linear combination of L-, M-, and S-cone excitations: 0.24L+0.11M-0.7S. The mechanism [L + S]-M is defined by 1.2L+0.4S-1.6M and the mechanism [L-M] by 1.2L-1.6M.
  43. C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977). [CrossRef] [PubMed]
  44. The response SM(f, p) of a mechanism M for a given phase p and frequency f is computed for a maximal modulation. T. Benzschawel, M. H. Brill, T. E. Cohn, “Analysis of human color mechanisms using sinusoidal spectral power distributions,” J. Opt. Soc. Am. A 3, 1713–1725 (1986). [CrossRef] [PubMed]
  45. H. B. Barlow, R. Gemperlein, R. Paul, A. Steiner, “Human contrast sensitivity for comb-filtered spectra,” J. Physiol. 340, 50 (1983); V. Bonnardel, F. J. Varela, “A frequency view of color: measuring the human sensitivity to square-wave spectral power distributions,” Proc. R. Soc. London Ser. B 245, 165–171 (1991);Ref. 20; V. Bonnardel, D. L. Ruderman, H. B. Barlow, “A fast determination of the spectral modulation sensitivity function: a comparison between trichromats and deuteranopes,” in Color Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmolgy Proceedings Series (Kluwer Academic, Dordrecht, the Netherlands, 1997); V. Bonnardel, E. M. Valero, H. B. Barlow, “S-cone input into the red–green opponent-color mechanism in a detection task,” Perception 27, 169 (1998). [CrossRef]
  46. H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectophotometry results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983). [CrossRef]
  47. T. T. J. M. Berendschot, J. van de Kraats, D. van Norren, “Foveal cone mosaic and visual pigment density in dichromats,” J. Physiol. 492, 307–314 (1996). [PubMed]
  48. A. Chapanis, “Spectral saturation and its relation to color-vision defects,” J. Exp. Psychol. 34, 24–44 (1944);B. C. Regan, J. P. Reffin, J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in color deficiency,” Vision Res. 34, 24–44 (1994). [CrossRef]
  49. P. DeMarco, J. Pokorny, V. C. Smith, “Full-spectrum cone come sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992). [CrossRef] [PubMed]
  50. This claim is evident if one recalls that the basis elements of a linear model can be thought of as vectors in a possibly infinite-dimensional vector space. A linear model represents all of the vectors in a subspace spanned by its basis elements. If there are two subspaces, each of dimension N, then the smallest subspace that contains both of them has a dimension no smaller than N (if the two subspaces were in fact one and the same) and no greater than 2N (when the intersection of the two subspaces is the zero vector). See P. R. Halmos, Finite-Dimensional Vector Spaces (Springer Verlag, New York, 1974), Sec. 12.
  51. T. Jaaskelainen, J. Parkkinen, S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990). [CrossRef]
  52. R. Lenz, M. Österberg, J. Hiltunen, T. Jaaskelainen, J. Parkkinen, “Unsupervised filtering of color spectra,” J. Opt. Soc. Am. A 13, 1315–1324 (1996). [CrossRef]
  53. We assume that there is only one illuminant in the scene and ignore the possibility of interreflections among surfaces within the scene. See the discussion of “flat-world” assumptions in Ref. 2.
  54. G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colors coding and optimum color information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited