OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 4 — Apr. 1, 2000
  • pp: 750–755

Isochromatic fringes in photoelasticity

Hillar Aben and Leo Ainola  »View Author Affiliations

JOSA A, Vol. 17, Issue 4, pp. 750-755 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (1256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The structure of the isochromatic fringe pattern in a two-dimensional photoelastic model is investigated with the phase diagram method of the theory of dynamic systems. Isochromatics are interpreted as phase paths (or level curves) of a Hamiltonian system. Possible singularities of the fringe pattern are analyzed.

© 2000 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

Original Manuscript: July 13, 1999
Revised Manuscript: December 9, 1999
Manuscript Accepted: December 13, 1999
Published: April 1, 2000

Hillar Aben and Leo Ainola, "Isochromatic fringes in photoelasticity," J. Opt. Soc. Am. A 17, 750-755 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Aben, J. Josepson, “Strange interference blots in the interferometry of inhomogeneous birefringent objects,” Appl. Opt. 36, 7172–7179 (1997). [CrossRef]
  2. H. Aben, L. Ainola, “Interference blots and fringe dislocations in optics of twisted birefringent media,” J. Opt. Soc. Am. A 15, 2404–2411 (1998). [CrossRef]
  3. Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns (Bremen, Germany 1997), W. Jüptner, W. Osten, eds. (Akademie Verlag, Berlin, 1997).
  4. J. M. Huntley, “Automated fringe pattern analysis in experimental mechanics: a review,” J. Strain Anal. 33, 105–125 (1998). [CrossRef]
  5. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems (Springer-Verlag, Berlin, 1990).
  6. A. Kuske, G. Robertson, Photoelastic Stress Analysis (Wiley, London, 1974).
  7. D. W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations (Clarendon, New York, 1987).
  8. A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Maier, Theory of Dynamical Systems on a Plane (Israel Program of Scientific Translation, Jerusalem, 1973).
  9. S. Lefschetz, Ordinary Differential Equations: Geometric Theory (Interscience, New York, 1957).
  10. D. K. Arrowsmith, C. M. Place, Ordinary Differential Equations: A Qualitative Approach with Applications (Chapman & Hall, London, 1982).
  11. H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, Mass., 1980).
  12. S. Timoshenko, J. N. Goodier, Theory of Elasticity, 2nd ed. (McGraw-Hill, New York, 1951).
  13. A. J. Durelli, A. Shukla, “Identification of isochromatic fringes,” Exp. Mech. 23, 111–119 (1983). [CrossRef]
  14. H. J. Hutchinson, J. F. Nye, P. S. Salmon, “The classification of isotropic points in stress fields,” J. Struct. Mech. 11, 371–381 (1983). [CrossRef]
  15. F. de Lamotte, “Analyse détaillée des différents résaux de franges d’interférence en photoélasticité,” Bull. Soc. R. Sci. Liège 38, 523–532 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited