OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 4 — Apr. 1, 2000
  • pp: 762–771

Fast algorithm for chirp transforms with zooming-in ability and its applications

Xuegong Deng, Bipin Bihari, Jianhua Gan, Feng Zhao, and Ray T. Chen  »View Author Affiliations

JOSA A, Vol. 17, Issue 4, pp. 762-771 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A general fast numerical algorithm for chirp transforms is developed by using two fast Fourier transforms and employing an analytical kernel. This new algorithm unifies the calculations of arbitrary real-order fractional Fourier transforms and Fresnel diffraction. Its computational complexity is better than a fast convolution method using Fourier transforms. Furthermore, one can freely choose the sampling resolutions in both x and u space and zoom in on any portion of the data of interest. Computational results are compared with analytical ones. The errors are essentially limited by the accuracy of the fast Fourier transforms and are higher than the order 10-12 for most cases. As an example of its application to scalar diffraction, this algorithm can be used to calculate near-field patterns directly behind the aperture, 0z<d2/λ. It compensates another algorithm for Fresnel diffraction that is limited to z>d2/λN [J. Opt. Soc. Am. A 15, 2111 (1998)]. Experimental results from waveguide-output microcoupler diffraction are in good agreement with the calculations.

© 2000 Optical Society of America

OCIS Codes
(050.1590) Diffraction and gratings : Chirping
(050.1940) Diffraction and gratings : Diffraction
(070.2590) Fourier optics and signal processing : ABCD transforms
(350.6980) Other areas of optics : Transforms

Original Manuscript: July 16, 1999
Revised Manuscript: December 7, 1999
Manuscript Accepted: December 22, 1999
Published: April 1, 2000

Xuegong Deng, Bipin Bihari, Jianhua Gan, Feng Zhao, and Ray T. Chen, "Fast algorithm for chirp transforms with zooming-in ability and its applications," J. Opt. Soc. Am. A 17, 762-771 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, Lasers (Mill Valley, Calif., 1986).
  2. S. A. Collins, “Lens-system diffraction integral written in forms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
  3. S. Abe, J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroup of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994). [CrossRef]
  4. S. Abe, J. T. Sheridan, “Almost-Fourier and almost-Fresnel transformations,” Opt. Commun. 113, 385–388 (1995). [CrossRef]
  5. S. Abe, J. T. Sheridan, “Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach,” J. Phys. A 27, 4179–4187 (1994). [CrossRef]
  6. X. Deng, Y. Li, D. Fan, Y. Qiu, “Propagation of paraxial flattened Gaussian beams in a general optical system,” Opt. Commun. 140, 226–230 (1997). [CrossRef]
  7. A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977). [CrossRef]
  8. G. W. Forbes, “Validity of the Fresnel approximation in the diffraction of collimated beams,” J. Opt. Soc. Am. A 13, 1816–1826 (1996). [CrossRef]
  9. B. Bihari, J. Gan, L. Wu, Y. Liu, S. Tang, R. T. Chen, “Optical clock distribution in supercomputers using polyimide-based waveguides,” in Optoelectronic Interconnects VI, J. P. Bristow, S. Tang, eds., Proc. SPIE3632, 123–133 (1999). [CrossRef]
  10. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984). [CrossRef]
  11. P. Cinato, K. C. Young, “Optical interconnections within multichip modules,” Opt. Eng. 32, 852–860 (1993). [CrossRef]
  12. J. Jahns, “Planar integrated free-space optics,” in Micro-Optics: Elements, Systems and Applications, H. P. Herzig, ed. (Taylor & Francis, London, UK, 1997), pp. 179–198; W. Singer, K. H. Brenner, “Stacked micro-optical systems,” pp. 199–221.
  13. V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980). [CrossRef]
  14. C. Kopp, P. Meyrueis, “Near-field Fresnel diffraction: improvement of a numerical propagator,” Opt. Commun. 158, 7–10 (1998). [CrossRef]
  15. S. B. Tucker, J. Ojeda-Castañeda, W. T. Cathey, “Matrix description of near-field diffraction and the fractional Fourier transform,” J. Opt. Soc. Am. A 16, 316–322 (1999). [CrossRef]
  16. V. Arizón, J. Ojeda-Castañeda, “Fresnel diffraction of substructured gratings: matrix description,” Opt. Lett. 20, 118–120 (1995). [CrossRef]
  17. X. Deng, Y. Li, D. Fan, Y. Qiu, “A fast algorithm for fractional Fourier transforms,” Opt. Commun. 138, 270–274 (1997). [CrossRef]
  18. F. J. Marinho, L. M. Bernardo, “Numerical calculation of fractional Fourier transforms with a single fast-Fourier-transform algorithm,” J. Opt. Soc. Am. A 15, 2111–2116 (1998). [CrossRef]
  19. H. Haman, J. L. de Bougrenet de la Tocnaye, “Efficient Fresnel-transform algorithm based on fractional Fresnel diffraction,” J. Opt. Soc. Am. A 12, 1920–1931 (1995). [CrossRef]
  20. B. W. Dickinson, K. Steigletz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Trans. Acoust. Speech Signal Process. ASSP-30, 25–31 (1982). [CrossRef]
  21. S. C. Pei, M. H. Yeh, “Improved discrete fractional Fourier transform,” Opt. Lett. 22, 1047–1049 (1997). [CrossRef] [PubMed]
  22. G. S. Agarwal, R. Simon, “A simple relation of fractional Fourier transform and relation to harmonic oscillator Green’s function,” Opt. Commun. 110, 23–26 (1994). [CrossRef]
  23. H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional order and their optical implementation,” Opt. Commun. 101, 163–169 (1993). [CrossRef]
  24. A. W. Lohmann, “A fake zoom lens for fractional Fourier experiments,” Opt. Commun. 115, 437–443 (1995). [CrossRef]
  25. S. Liu, J. Xu, Y. Zhang, L. Chen, C. Li, “General optical implementations of fractional Fourier transforms,” Opt. Lett. 20, 1053–1055 (1995). [CrossRef] [PubMed]
  26. L. M. Bernardo, O. D. D. Soares, “Fractional Fourier transform and imaging,” J. Opt. Soc. Am. A 11, 2622–2626 (1994). [CrossRef]
  27. P. Pellat-Finet, “Fresnel diffraction and the fractional Fourier transform,” Opt. Lett. 19, 1388–1390 (1994). [CrossRef] [PubMed]
  28. R. G. Dorsch, A. W. Lohmann, Y. Bitran, D. Mendlovic, H. M. Ozaktas, “Chirp filtering in the fractional Fourier domain,” Appl. Opt. 33, 7599–7602 (1994). [CrossRef] [PubMed]
  29. D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transforms and their optical implementations: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993). [CrossRef]
  30. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transforms and their optical implementations. II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993). [CrossRef]
  31. S. Granieri, O. Trabocchi, E. E. Sicre, “Fractional Fourier transform applied to spatial filtering in the Fresnel domain,” Opt. Commun. 119, 275–278 (1995). [CrossRef]
  32. H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994). [CrossRef]
  33. D. Mendlovic, Y. Bitran, R. G. Dorsh, A. W. Lohmann, “Optical fractional correlation: experimental results,” J. Opt. Soc. Am. A 12, 1665–1670 (1995). [CrossRef]
  34. D. Mendlovic, Z. Zalevsky, R. G. Dorsh, Y. Bitran, A. W. Lohmann, H. M. Ozaktas, “New signal representation based on the fractional Fourier transform: definitions,” J. Opt. Soc. Am. A 12, 2424–2431 (1995). [CrossRef]
  35. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995). [CrossRef]
  36. P. Pellat-Finet, G. Bonnet, “Fractional-order Fourier transform and Fourier optics,” Opt. Commun. 111, 141–154 (1994). [CrossRef]
  37. A. I. Zayed, “On the relationship between Fourier transform and fractional Fourier transform,” IEEE Signal Process. Lett. 3, 310–311 (1996). [CrossRef]
  38. A. W. Lohmann, B. H. Soffer, “Relationships between the Radon–Wigner and fractional Fourier transforms,” J. Opt. Soc. Am. A 11, 1789–1801 (1994). [CrossRef]
  39. S. Roose, B. Brichau, E. W. Stijns, “An efficient interpolation algorithm for Fourier and diffractive optics,” Opt. Commun. 97, 312–318 (1993). [CrossRef]
  40. L. R. Rabiner, B. Gold, Theory and Applications of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975).
  41. M. Sypek, “Light propagation in the Fresnel region: new numerical approach,” Opt. Commun. 116, 43–48 (1995). [CrossRef]
  42. P. A. Béleuger, “Beam propagation and the ABCD ray matrix,” Opt. Lett. 16, 196–198 (1991). [CrossRef]
  43. A. Yariv, Optical Electronics (CBC College Publishing, New York, 1985), Chap. 2, pp. 17–52.
  44. Y. B. Karasik, “Expression of the kernel of a fractional Fourier transform in elementary functions,” Opt. Lett. 19, 769–771 (1994). [CrossRef] [PubMed]
  45. For κ=2n the kernel becomes a Dirac delta function, BFrFT(2n)(u, x)=δ[u-(-1)nx], and the transform is straightforward and needs no further calculation.
  46. To clarify the later results and be self-consistent, we will adopt the following definition of Fourier transform in the discrete form: Given f(x), its Fourier transform is  g(u)≡F{f(x)}=∫-∞∞f(x)exp(-2πixu)dx, which could be numerically approximated by g(u)=F{f(x)}≈gk=∑l=0Nx-1fn exp[-2πi(n-Nx/2)(k-Nu/2)δxδu]δx. We have assumed that the Fourier transform will map f(x) from x∈[-(Nxδx)/2,+(Nxδx)/2] to g(u) in the domain u∈[-(Nuδu)/2,+(Nuδu)/2]. If gk is given by a standard DFT or FFT, however, the mapped domain will be u∈[-1/(2δx),+1/(2δx)] owing to the sampling condition δxδu≡1/Nx.
  47. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevshy, C. Ferria, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996). [CrossRef]
  48. I. S. Granshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1985).
  49. H. M. Ozaktas, H. Urey, “Space–bandwidth product of conventional Fourier transforming systems,” Opt. Commun. 105, 1–6 (1994).
  50. L. Austander, F. A. Grünbaum, “The Fourier transform and the inverse Fourier transform,” Inverse Probl. 5, 149–164 (1989). [CrossRef]
  51. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992).
  52. The width of the mask used to fabricate the 10-µm-thick waveguide is 50 µm. Owing to the highly isotropic etching, the final width of the polyimide waveguide can be varied in the range of 60∼70 µm depending on the precise control of experiment environments. In our simulation, we used a typical value of 65 µm.
  53. F. Depasse, M. A. Paesler, D. Courjon, J. M. Vigoureux, “Huygens–Fresnel principle in the near field,” Opt. Lett. 20, 234–236 (1995). [CrossRef] [PubMed]
  54. A. Yariv, Optical Electronics (CBC College Publishing, New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited