OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 4 — Apr. 1, 2000
  • pp: 780–789

Average characteristics of partially coherent electromagnetic beams

S. R. Seshadri  »View Author Affiliations


JOSA A, Vol. 17, Issue 4, pp. 780-789 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000780


View Full Text Article

Enhanced HTML    Acrobat PDF (180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Average characteristics of partially coherent electromagnetic beams are treated with the paraxial approximation. Azimuthally or radially polarized, azimuthally symmetric beams and linearly polarized dipolar beams are used as examples. The change in the mean squared width of the beam from its value at the location of the beam waist is found to be proportional to the square of the distance in the propagation direction. The proportionality constant is obtained in terms of the cross-spectral density as well as its spatial spectrum. The use of the cross-spectral density has advantages over the use of its spatial spectrum.

© 2000 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(090.1970) Holography : Diffractive optics
(260.1960) Physical optics : Diffraction theory

History
Original Manuscript: April 5, 1999
Revised Manuscript: December 1, 1999
Manuscript Accepted: November 10, 1999
Published: April 1, 2000

Citation
S. R. Seshadri, "Average characteristics of partially coherent electromagnetic beams," J. Opt. Soc. Am. A 17, 780-789 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-4-780


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995).
  2. J. T. Foley, M. S. Zubairy, “The directionality of Gaussian Schell-model beams,” Opt. Commun. 26, 297–300 (1978). [CrossRef]
  3. A. T. Friberg, R. J. Sudol, “The spatial coherence properties of Gaussian Schell-model beams,” Opt. Acta 30, 1075–1097 (1983). [CrossRef]
  4. M. Zahid, M. S. Zubairy, “Directionality of partially co-herent Bessel–Gauss beams,” Opt. Commun. 70, 361–364 (1989). [CrossRef]
  5. R. Borghi, M. Santarsiero, “M2 factor of Bessel–Gauss beams,” Opt. Lett. 22, 262–264 (1997). [CrossRef] [PubMed]
  6. S. R. Seshadri, “Partially coherent Gaussian Schell-model electromagnetic beams,” J. Opt. Soc. Am. A 16, 1373–1380 (1999). [CrossRef]
  7. F. Gori, M. Santarsiero, A. Sona, “The change of width for a partially coherent beam on paraxial propagation,” Opt. Commun. 82, 197–203 (1991). [CrossRef]
  8. M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, P. Vahimaa, “Spreading properties of beams radiated by partially coherent Schell-model sources,” J. Opt. Soc. Am. A 16, 106–112 (1999). [CrossRef]
  9. Y. Li, E. Wolf, “Radiation from anisotropic Gaussian Schell-model sources,” Opt. Lett. 7, 256–258 (1982). [CrossRef] [PubMed]
  10. F. Gori, G. Guattari, “A new type of optical fields,” Opt. Commun. 48, 7–12 (1983). [CrossRef]
  11. R. Simon, N. Mukunda, E. C. G. Sudarshan, “Partially coherent beams and a generalized ABCD law,” Opt. Commun. 65, 322–328 (1988). [CrossRef]
  12. J. Serna, R. Martinez-Herrero, P. M. Mejias, “Parametric characterization of a general partially coherent beam propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991). [CrossRef]
  13. E. Wolf, “The radiant intensity from planar sources of any state of coherence,” J. Opt. Soc. Am. 68, 1597–1605 (1978). [CrossRef]
  14. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990). [CrossRef]
  15. A. E. Siegman, “Defining the effective radius of curvature for a nonideal optical beam,” IEEE J. Quantum Electron. 27, 1146–1148 (1991). [CrossRef]
  16. E. Wolf, E. Collett, “Partially coherent sources which produce the same far-field intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978). [CrossRef]
  17. P. De Santis, F. Gori, G. Guattari, C. Palma, “An example of a Collett–Wolf source,” Opt. Commun. 29, 256–260 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited