OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 4 — Apr. 1, 2000
  • pp: 802–813

Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field

H. Ishikawa, H. Tamaru, and K. Miyano  »View Author Affiliations

JOSA A, Vol. 17, Issue 4, pp. 802-813 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (651 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A model is proposed that describes the essential optical process in the recently observed resonant light scattering from a microsphere resonator that is strongly coupled to the substrate. The experimentally observed field patterns across the resonance can be reproduced quite well by a numerical calculation taking into account only a few vector spherical waves that are converted from nonpropagating to propagating waves at the substrate surface. Explicit consideration of the multiple-reflection effect is not necessary to reproduce the experimental results. Comparison of the experiment and the calculation suggests the splitting of degenerate resonance modes that have different azimuthal mode numbers within a single broad resonance line. These results are discussed on the basis of the strongly coupled nature of the system.

© 2000 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(230.5750) Optical devices : Resonators
(260.6970) Physical optics : Total internal reflection
(290.3700) Scattering : Linewidth
(350.3950) Other areas of optics : Micro-optics

Original Manuscript: May 25, 1999
Revised Manuscript: October 5, 1999
Manuscript Accepted: November 16, 1999
Published: April 1, 2000

H. Ishikawa, H. Tamaru, and K. Miyano, "Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field," J. Opt. Soc. Am. A 17, 802-813 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. W. Barber, K. Chang, eds., Optical Effect Associated with Small Particles (World Scientific, Singapore, 1988).
  2. Y. Yamamoto, R. E. Slusher, “Optical process in microcavities,” Phys. Today 46, 66–74 (1993). [CrossRef]
  3. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  4. B. E. Little, S. T. Chu, H. A. Haus, “Track changing by use of the phase response of microspheres and resonators,” Opt. Lett. 23, 894–896 (1998). [CrossRef]
  5. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997). [CrossRef] [PubMed]
  6. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express. 3, 4–11 (1998). [CrossRef] [PubMed]
  7. T. Fujimura, K. Edamatsu, T. Itho, R. Shimada, A. Imada, T. Koda, N. Chiba, H. Muramatsu, T. Ataka, “Scanning near-field optical images of ordered polystyrene particle layers in transmission and luminescence excitation modes,” Opt. Lett. 22, 489–491 (1997). [CrossRef] [PubMed]
  8. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623–4626 (1999). [CrossRef]
  9. M. L. Gorodetsky, V. S. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994). [CrossRef]
  10. M. L. Gorodetsky, V. S. Ilchenko, “Optical microsphere resonator: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999). [CrossRef]
  11. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  12. L. G. Guimarães, H. M. Nussenzveig, “Theory of Mie resonances and ripple fluctuations,” Opt. Commun. 89, 363–369 (1992). [CrossRef]
  13. G. Roll, T. Kaiser, S. Lange, G. Schweiger, “Ray interpretation of multipole fields in spherical dielectric cavities,” J. Opt. Soc. Am. A 15, 2879–2891 (1998). [CrossRef]
  14. A. Serpengüzel, S. Arnold, G. Griffel, J. A. Lock, “Enhanced coupling to microsphere resonances with optical fiber,” J. Opt. Soc. Am. B 14, 790–795 (1997). [CrossRef]
  15. S. Schiller, R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991). [CrossRef] [PubMed]
  16. S. Schiller, I. I. Yu, M. M. Fejer, R. L. Byer, “Fused silica monolithic total-internal-reflection resonator,” Opt. Lett. 17, 378–380 (1992). [CrossRef] [PubMed]
  17. A. Serpengüzel, S. Arnold, G. Griffel, “Excitation of resonances of microsphere on an optical fiber,” Opt. Lett. 20, 654–656 (1995). [CrossRef]
  18. G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, N. Morris, “Morphology-dependent resonances of a microsphere-optical fiber system,” Opt. Lett. 21, 695–697 (1996). [CrossRef] [PubMed]
  19. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, V. Lefèvre, “Eroded monomode fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett. 20, 813–815 (1995). [CrossRef] [PubMed]
  20. J. C. Knight, G. Cheung, F. Jacques, T. A. Birks, “Phase matched excitation of whispering-gallery mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997). [CrossRef] [PubMed]
  21. J. C. Knight, N. Duvreuil, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Mapping whispering-gallery modes in microspheres with a near-field probe,” Opt. Lett. 20, 1515–1517 (1995). [CrossRef] [PubMed]
  22. J. P. Barton, D. R. Alexander, S. A. Shaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989). [CrossRef]
  23. H.-B. Lin, J. D. Eversole, A. J. Campillo, J. P. Barton, “Excitation localization principle for spherical microcavities,” Opt. Lett. 23, 1921–1923 (1998). [CrossRef]
  24. H. Ishikawa, H. Tamaru, K. Miyano, “Observation of a modulation effect caused by a microsphere resonator strongly coupled to a dielectric substrate,” Opt. Lett. 24, 643–645 (1999). [CrossRef]
  25. D. C. Prieve, N. A. Frej, “Total internal reflection microscopy: a qualitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990). [CrossRef]
  26. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1998).
  27. Mode numbers were deduced from the comparison between the observed resonance peaks and the calculated distributions of s=1 and s=2 resonant modes for an isolated sphere (Fig. 3 in Ref. 24). Because the measurement was carried out over more than three spectral ranges, the mode number can be obtained uniquely, along with geometrical parameters (radius and refractive index of the sphere), by adjusting them so that the particular spacing patterns between the adjacent modes are reproduced.
  28. H. Chew, D.-S. Wang, M. Kerker, “Elastic scattering of evanescent electromagnetic waves,” Appl. Opt. 18, 2679–2687 (1979). [CrossRef] [PubMed]
  29. C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995). [CrossRef]
  30. A. V. Zvyagin, K. Goto, “Mie scattering of evanescent waves by a dielectric sphere: comparison of multipole expansion and group-theory methods,” J. Opt. Soc. Am. A 15, 3003–3008 (1998). [CrossRef]
  31. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  32. We are interested in the near field of the WGM’s because the distance between the sphere and the substrate is smaller than the wavelength (actually zero in this case). The near field is strongly enhanced in the resonant condition, just as the field inside the sphere.
  33. A. Shinya, M. Fukui, “Finite-difference time-domain analysis of the interaction of Gaussian evanescent light with a single dielectric sphere or ordered dielectric spheres,” Opt. Rev. 6, 215–223 (1999). [CrossRef]
  34. P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986). [CrossRef]
  35. T. Takemori, M. Inoue, K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987). [CrossRef]
  36. E. Fucile, P. Denti, F. Borghese, R. Saija, O. I. Sindoni, “Optical properties of a sphere in the vicinity of a plane surface,” J. Opt. Soc. Am. A 14, 1505–1514 (1997). [CrossRef]
  37. G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984). [CrossRef]
  38. T. P. Burghardt, N. L. Thompson, “Effect of planar dielectric interfaces on fluorescence emission and detection,” Biophys. J. 46, 729–737 (1984). [CrossRef] [PubMed]
  39. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  40. Finer details that do not match with the observed pattern (Fig. 3) are probably due to our complete negligence of the nonresonant contribution, which tends to smear out the interference.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited