OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 5 — May. 1, 2000
  • pp: 836–845

Spatiotemporal filters in the detection of background modulation targets

Allison M. McKendrick, David R. Badcock, and Algis J. Vingrys  »View Author Affiliations

JOSA A, Vol. 17, Issue 5, pp. 836-845 (2000)

View Full Text Article

Acrobat PDF (528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The background modulation method has been proposed as a useful test of early visual mechanisms [Biol. Cybern. 37, 77 (1980); Biol. Cybern. 47, 173 (1983)]. The task involves measuring detection thresholds for a luminous spot (increment) drifting over a spatially or temporally modulated background. The study explores the nature of the detecting mechanism in terms of spatial and temporal filters for both spatial and temporal background modulations. In both cases we find that thresholds can be explained by spatial contrast cues generated by the moving spot and that their spatiotemporal characteristics suggest detection by magnocellular processes.

© 2000 Optical Society of America

OCIS Codes
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6110) Vision, color, and visual optics : Spatial filtering
(330.7310) Vision, color, and visual optics : Vision

Allison M. McKendrick, David R. Badcock, and Algis J. Vingrys, "Spatiotemporal filters in the detection of background modulation targets," J. Opt. Soc. Am. A 17, 836-845 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. L. Barbur and K. Ruddock, “Spatial characteristics of movement detection mechanisms in human vision. I. Achromatic vision,” Biol. Cybern. 37, 77–92 (1980).
  2. I. E. Holliday and K. Ruddock, “Two spatial-temporal filters in human vision. 1. Temporal and spatial frequency response characteristics,” Biol. Cybern. 47, 173–190 (1983).
  3. D. M. Coleston, E. Chronicle, K. H. Ruddock, and C. Kennard, “Precortical dysfunction of spatial and temporal visual processing in migraine,” J. Neurol. Neurosurg. Psych. 57, 1208–1211 (1994).
  4. A. R. Grounds, I. E. Holliday, and K. Ruddock, “Two spatio-temporal filters in human vision. 2. Selective modification in amblyopia, albinism and hemianopia,” Biol. Cybern. 47, 191–201 (1983).
  5. G. B. Wetherill and H. Levitt, “Sequential estimation of points on a psychometric function,” Br. J. Math. Stat. Psych. 18, 1–10 (1965).
  6. C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517–552 (1966).
  7. A. R. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–140 (1984).
  8. D. H. Kelly and H. S. Magnuski, “Pattern detection and the two-dimensional Fourier transform: circular targets,” Vision Res. 15, 911–915 (1975).
  9. F. L. van Nes, J. J. Koenderink, H. Nas, and M. A. Bouman, “Spatiotemporal modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 1082–1088 (1967).
  10. G. E. Legge, “Sustained and transient mechanisms in human vision: temporal and spatial properties,” Vision Res. 18, 69–81 (1978).
  11. D. C. Burr, “Temporal summation of moving images by the human visual system,” Proc. R. Soc. London Ser. B 211, 321–339 (1981).
  12. R. J. Snowden and O. J. Braddick, “The temporal integration and resolution of velocity signals,” Vision Res. 31, 907–914 (1991).
  13. J. J. Kulikowski, “Some stimulus parameters affecting spatial and temporal resolution of human vision,” Vision Res. 11, 83–93 (1971).
  14. D. H. Kelly, “Frequency doubling in visual responses,” J. Opt. Soc. Am. 56, 1628–1633 (1966).
  15. W. H. Merigan, “Chromatic and achromatic vision of Macaques: role of the P pathway,” J. Neurosci. 9, 776–783 (1989).
  16. W. H. Merigan and J. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347–352 (1990).
  17. R. S. Harwerth and D. M. Levi, “Reaction time as a measure of suprathreshold grating detection,” Vision Res. 18, 1579–1586 (1978).
  18. D. J. Tolhurst, “Reaction times to the detection of gratings by human observers: a probabilistic mechanism,” Vision Res. 15, 1143–1149 (1975).
  19. C. A. Burbeck and D. H. Kelly, “Contrast gain measurements and the transient/sustained dichotomy,” J. Opt. Soc. Am. 71, 1335–1342 (1981).
  20. H. A. Quigley, C. R. Dunkelberger, and W. R. Green, “Chronic human glaucoma causing selectively greater loss of large optic nerve fibers,” Ophthalmology 95, 357–363 (1988).
  21. M. Livingstone, G. D. Rosen, F. W. Drislane, and A. M. Galaburda, “Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia,” Proc. Natl. Acad. Sci. USA 88, 7943–7947 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited