OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 5 — May. 1, 2000
  • pp: 903–910

Generalized Fried parameter after adaptive optics partial wave-front compensation

Manuel P. Cagigal and Vidal F. Canales  »View Author Affiliations


JOSA A, Vol. 17, Issue 5, pp. 903-910 (2000)
http://dx.doi.org/10.1364/JOSAA.17.000903


View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Atmospheric turbulence imposes the resolution limit attainable by large ground-based telescopes. This limit is λ/r0, where r0 is the Fried parameter or seeing cell size. Working in the visible, adaptive optics systems can partially compensate for turbulence-induced distortions. By analogy with the Fried parameter, r0, we have introduced a generalized Fried parameter, ρ0, that plays the same role as r0 but in partial compensation. Using this parameter and the residual phase variance, we have described the phase structure function, estimated the point-spread function halo size, and derived an expression for the Strehl ratio as a function of the degree of compensation. Finally, it is shown that ρ0 represents the diameter of the coherent cells in the pupil domain.

© 2000 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(110.6770) Imaging systems : Telescopes

History
Original Manuscript: July 12, 1999
Revised Manuscript: December 22, 1999
Manuscript Accepted: February 9, 1999
Published: May 1, 2000

Citation
Manuel P. Cagigal and Vidal F. Canales, "Generalized Fried parameter after adaptive optics partial wave-front compensation," J. Opt. Soc. Am. A 17, 903-910 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-5-903


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Y. Wang, J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 78–87 (1978). [CrossRef]
  2. F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Lena, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).
  3. M. C. Roggemann, “Limited degree-of-freedom adaptive optics and image reconstruction,” Appl. Opt. 30, 4227–4233 (1991). [CrossRef] [PubMed]
  4. M. C. Roggemann, B. Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  5. A. Glindemann, “Improved performance of adaptive optics in the visible,” J. Opt. Soc. Am. A 11, 1370–1375 (1994). [CrossRef]
  6. P. Nisenson, R. Barakat, “Partial atmospheric correction with adaptive optics,” J. Opt. Soc. Am. A 4, 2249–2253 (1987). [CrossRef]
  7. F. Rigaut, B. L. Ellerbroek, M. J. Northcott, “Comparison of curvature-based and Shack–Hartmann-based adaptive optics for the Gemini telescope,” Appl. Opt. 36, 2856–2868 (1997). [CrossRef] [PubMed]
  8. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993).
  9. G. Valley, “Long- and short-term Strehl ratios for turbulence with finite inner and outer scales,” Appl. Opt. 18, 984–987 (1979). [CrossRef] [PubMed]
  10. J. Winocur, “Modal compensation of atmospheric turbulence induced wave front aberrations,” Appl. Opt. 21, 433–438 (1982). [CrossRef] [PubMed]
  11. J. W. Goodman, Statistical Optics (Wiley-Interscience, New York, 1985).
  12. V. F. Canales, M. P. Cagigal, “Rician distribution to describe speckle statistics in adaptive optics partial correction,” Appl. Opt. 38, 766–771 (1999). [CrossRef]
  13. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  14. A. Kolmogorov, Classic Papers on Statistical Theory, S. Friedlander, L. Topper, eds. (Interscience, New York, 1961).
  15. D. L. Fried, “Statistics for a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965). [CrossRef]
  16. J. Conan, “Etude de la correction partielle en optique adaptative,” Ph.D. dissertation, Office National d’Etudes et de Recherches Aerospatiales Pub. 1995-1 (Paris, 1995).
  17. M. P. Cagigal, V. F. Canales, “Analysis of the photon statistics in partially corrected wavefronts,” in Propagation and Imaging through the Atmosphere, L. R. Bissonnette, C. Dainty, eds., Proc. SPIE3125, 320–326 (1997). [CrossRef]
  18. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990). [CrossRef]
  19. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, UK, 1998).
  20. G. Valley, S. Wandzura, “Spatial correlation of phaseexpansion coefficients for propagation through atmospheric turbulence,” J. Opt. Soc. Am. 69, 712–717 (1979). [CrossRef]
  21. M. P. Cagigal, V. F. Canales, “Speckle statistics in partially corrected wave fronts,” Opt. Lett. 23, 1072–1074 (1998). [CrossRef]
  22. V. F. Canales, M. P. Cagigal, “Photon statistics in partially compensated wave fronts,” J. Opt. Soc. Am. A 16, 2550–2554 (1999). [CrossRef]
  23. R. Smithson, M. Peri, R. Benson, “Quantitative simulation of image correction for astronomy with a segmented mirror,” Appl. Opt. 27, 1615–1620 (1988). [CrossRef] [PubMed]
  24. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics XIX, E. Wolf, ed., (North-Holland, Amsterdam, 1981), pp. 281–376.
  25. H. T. Yura, “Short-term average optical beam spread in a turbulent medium,” J. Opt. Soc. Am. 63, 567–572 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited