OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 6 — Jun. 1, 2000
  • pp: 1021–1032

Bessel-like beams modulated by arbitrary radial functions

R. M. Herman and T. A. Wiggins  »View Author Affiliations

JOSA A, Vol. 17, Issue 6, pp. 1021-1032 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (219 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approximate method for determining the radial and axial intensity of a Bessel-like beam is presented for the general case in which a radial Bessel distribution of any order is modulated by an arbitrary function. For Bessel–Gauss, generalized Bessel–Gauss, and Bessel–super-Gauss beams, this simple approximation yields results that are very close to the exact values, while they are exact for Bessel beams. A practical beam that can be generated with a combination of simple lenses is also analyzed and illustrated.

© 2000 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(350.5500) Other areas of optics : Propagation

Original Manuscript: February 19, 1999
Revised Manuscript: December 1, 1999
Manuscript Accepted: December 1, 1999
Published: June 1, 2000

R. M. Herman and T. A. Wiggins, "Bessel-like beams modulated by arbitrary radial functions," J. Opt. Soc. Am. A 17, 1021-1032 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954). [CrossRef]
  2. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987);J. Durnin, J. H. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  3. R. M. Herman, T. A. Wiggins, “Apodization of diffractionless beams,” Appl. Opt. 31, 5913–5915 (1992);A. J. Cox, J. D’Anna, “Constant-axial-intensity nondiffracting beams,” Opt. Lett. 17, 232–234 (1992). [CrossRef] [PubMed]
  4. F. Gori, G. Guattori, C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
  5. C. Palma, V. Bagini, “Propagation of super-Gaussian beams,” Opt. Commun. 111, 6–10 (1994). [CrossRef]
  6. V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, G. Spagnolos, “Generalized Bessel–Gauss beams,” J. Mod. Opt. 43, 1155–1166 (1996).
  7. S. Ruschin, “Modified Bessel nondiffracting beams,” J. Opt. Soc. Am. A 11, 3224–3228 (1994). [CrossRef]
  8. J. Turunen, A. Vasara, A. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988);R. Liu, B.-Z. Dong, G.-Z. Yang, B.-Y. Gu, “Generation of pseudo-nondiffracting beams with use of diffractive phase elements designed by a conjugate-gradient method,” J. Opt. Soc. Am. A 15, 144–151 (1998). [CrossRef] [PubMed]
  9. M. V. Perez, C. Gomez-Reino, M. J. Cuadrado, “Diffraction patterns and zone plates produced by thin linear axicons,” Opt. Acta 33, 1161–1176 (1986). [CrossRef]
  10. R. M. Herman, T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991). [CrossRef]
  11. R. M. Herman, T. A. Wiggins, “High-efficiency diffractionless beams of constant size and intensity,” Appl. Opt. 33, 7297–7306 (1994). [CrossRef] [PubMed]
  12. Bateman Manuscript Project, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2.
  13. C. Palma, G. Cincotti, G. Guattari, M. Santarsiero, “Imaging of generalized Bessel–Gauss beams,” J. Mod. Opt. 43, 2269–2277 (1996). [CrossRef]
  14. R. H. Jordan, D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution,” Opt. Lett. 19, 427–429 (1994);P. L. Overfelt, C. S. Kenney, “Comparison of the propagation characteristics of Bessel, Bessel–Gauss and Gaussian beams diffracted by a circular aperture,” J. Opt. Soc. Am. A 8, 732–745 (1991). [CrossRef] [PubMed]
  15. Z.-P. Jiang, “Super Gaussian Bessel beam,” Opt. Commun. 125, 207–210 (1996). [CrossRef]
  16. J. Sochacki, Z. Jaroszewicz, L. R. Staroński, A. Kołodziejczyk, “Annular-aperture logorithmic axicon,” J. Opt. Soc. Am. A 10, 1765–1768 (1993). [CrossRef]
  17. H. B. Dwight, Tables of Integrals and Other Mathematical Data (Macmillan, New York, 1947), Eq. 808.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited