OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 6 — Jun. 1, 2000
  • pp: 1048–1058

Dipole radiation into grating structures

Hervé Rigneault, Fabien Lemarchand, and Anne Sentenac  »View Author Affiliations

JOSA A, Vol. 17, Issue 6, pp. 1048-1058 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (567 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed electromagnetic analysis for the radiation of an electric source located inside grating structures. Our analysis is based on the differential method and uses the scattering-matrix algorithm. We show that gratings that exhibit periodic modulations along two spatial directions (crossed gratings) enable one to couple out the totality of the light emitted by the source into the guided modes of the structure. This property is investigated through the computation of the far-field radiation patterns for crossed gratings with various etching depths. One key result is the possibility to confine the emitted light in a direction about the sample normal, a property that is of interest in the context of spontaneous emission control by microcavity structures.

© 2000 Optical Society of America

OCIS Codes
(130.1750) Integrated optics : Components
(230.3990) Optical devices : Micro-optical devices
(260.1960) Physical optics : Diffraction theory
(260.3800) Physical optics : Luminescence
(350.2770) Other areas of optics : Gratings
(350.3950) Other areas of optics : Micro-optics

Original Manuscript: October 13, 1999
Revised Manuscript: March 1, 2000
Manuscript Accepted: March 1, 2000
Published: June 1, 2000

Hervé Rigneault, Fabien Lemarchand, and Anne Sentenac, "Dipole radiation into grating structures," J. Opt. Soc. Am. A 17, 1048-1058 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. P. Goy, J. M. Raimond, M. Gross, S. Haroche, “Observation of cavity-enhanced single atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983). [CrossRef]
  3. F. DeMartini, G. Innocenti, G. R. Jacobivitz, P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 1995–2957 (1987); H. Yokoyama, M. Suzuki, Y. Nambu, “Spontaneous emission and laser oscillation properties of microcavities containing dye solution,” Appl. Phys. Lett. 58, 2598–2600 (1991). [CrossRef]
  4. G. Björk, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991);D. G. Deppe, C. Lei, C. C. Lin, D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41, 325–344 (1994). [CrossRef]
  5. H. Benisty, H. De Neve, C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part 1. Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998);H. Benisty, H. De Neve, C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II. Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998). [CrossRef]
  6. P. L. Gourley, “Microlaser-optical-mechanical systems for biomedicine,” Opt. Photon. News 8(4), 31–36 (1997). [CrossRef]
  7. F. De Martini, G. Di Giuseppe, M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900–903 (1996);S. C. Kitson, P. Jonsson, J. G. Rarity, P. R. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A 58, 620–627 (1998). [CrossRef] [PubMed]
  8. H. Rigneault, S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996). [CrossRef] [PubMed]
  9. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Phys. Rev. Lett. 69, 449–451 (1996).
  10. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998). [CrossRef]
  11. V. Lefèvre-Seguin, J. C. Knight, V. Sandoghdar, D. S. Weiss, J. Hare, J. M. Raymond, S. Haroche, “Very high Q whispering-gallery modes in silica microsheres for cavity QED experiments,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 101–133.
  12. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995). [CrossRef] [PubMed]
  13. H. Rigneault, S. Robert, C. Begon, B. Jacquier, P. Moretti, “Radiative and guided wave emission of Er3+ atoms located in planar multidielectric structures,” Phys. Rev. A 55, 1497–1502 (1997). [CrossRef]
  14. S. C. Kitson, W. L. Barnes, J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122, 147–154 (1996). [CrossRef]
  15. S. C. Kitson, W. L. Barnes, J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441–11445 (1995). [CrossRef]
  16. S. C. Kitson, W. L. Barnes, J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996). [CrossRef] [PubMed]
  17. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996). [CrossRef]
  18. T. Tamir in Integrated Optics, T. Tamir, ed. (Springer, New York, 1975), p. 83.
  19. M. Nevière, R. Petit, M. Cadilhac, “About the theory of optical grating coupler-waveguide systems,” Opt. Commun. 8, 113–117 (1973). [CrossRef]
  20. W. Lukosz, D. Clerc, Ph. M. Nellen, Ch. Stamm, P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Biosens. Bioelectron. 6, 227–232 (1991);K. G. Sullivan, O. King, C. Sigg, D. G. Hall, “Directional, enhanced fluorescence from molecules near a periodic surface,” Appl. Opt. 33, 2447–2454 (1994). [CrossRef] [PubMed]
  21. P. Vincent, “A finite-difference method for dielectric and conducting cross-grating,” Opt. Commun. 26, 293–296 (1978). [CrossRef]
  22. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  23. R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides,” J. Mod. Opt. 34, 1589–1617 (1987). [CrossRef]
  24. J.-J. Greffet, R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997). [CrossRef]
  25. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. A 4, 481–489 (1987). [CrossRef]
  26. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics, Wiley Series in Pure and Applied Optics (Wiley, New York, 1991).
  27. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  28. C. Amra, S. Maure, “Electromagnetic power provided by sources within multilayer optics: free-space and modal patterns,” J. Opt. Soc. Am. A 14, 3102–3113 (1997);C. Amra, S. Maure, “Mutual coherence and conical pattern of sources optimally excited within multilayer optics,” J. Opt. Soc. Am. A 14, 3114–3124 (1997). [CrossRef]
  29. R. Petit, ed., Electromagnetic Theory of Grating (Springer-Verlag, Berlin, 1980).
  30. J. B. Harris, T. W. Preist, J. R. Sambles, R. N. Thorpe, R. A. Watts, “Optical response of bigratings,” J. Opt. Soc. Am. A 13, 2041–2049 (1996). [CrossRef]
  31. P. Henricini, Discrete Variable Methods in Ordinary Differential Equations (Wiley, New York, 1963).
  32. F. Montiel, M. Nevière, “Differential theory of gratings: extension to deep gratings of arbitrary profile and permittivity through the R-matrix propagation algorithm,” J. Opt. Soc. Am. A 12, 3241–3250 (1994). [CrossRef]
  33. Sharon, D. Rosenblatt, A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997). [CrossRef]
  34. H. Rigneault, F. Lemarchand, A. Sentenac, H. Giovannini, “Extraction of light from sources located inside waveguide grating structures,” Opt. Lett. 24, 148–150 (1999). [CrossRef]
  35. F. Lemarchand, A. Sentenac, H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structure,” Opt. Lett. 23, 1149–1151 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited