OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 6 — Jun. 1, 2000
  • pp: 1059–1066

Marginal phase correction of truncated Bessel beams

Andrey G. Sedukhin  »View Author Affiliations


JOSA A, Vol. 17, Issue 6, pp. 1059-1066 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001059


View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Approximate analytic expressions are obtained for evaluating the axial intensity and the central-lobe diameter of J0 Bessel beams transmitted through a finite-aperture phase filter. A reasonable quality factor governing the axial-intensity behavior of a phase-undistorted truncated Bessel beam is found to be the inverse square root of the Fresnel number defined, for a given aperture, from the axial point of geometrical shadow. Additional drastic reduction of axial-intensity oscillations is accomplished by using marginal phase correction of the beam instead of the well-known amplitude apodization. A procedure for analytically calculating an optimal monotonic slowly varying correction phase function is described.

© 2000 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(220.1230) Optical design and fabrication : Apodization
(350.5500) Other areas of optics : Propagation
(350.7420) Other areas of optics : Waves

History
Original Manuscript: August 24, 1999
Manuscript Accepted: February 15, 2000
Published: June 1, 2000

Citation
Andrey G. Sedukhin, "Marginal phase correction of truncated Bessel beams," J. Opt. Soc. Am. A 17, 1059-1066 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-6-1059


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  2. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  3. J. Durnin, J. J. Miceli, J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13, 79–80 (1988). [CrossRef] [PubMed]
  4. Z. Jiang, Q. Lu, Z. Liu, “Propagation of apertured Bessel beams,” Appl. Opt. 34, 7183–7185 (1995). [CrossRef] [PubMed]
  5. R. Borghi, M. Santarsiero, F. Gori, “Axial intensity of apertured Bessel beams,” J. Opt. Soc. Am. A 14, 23–26 (1997). [CrossRef]
  6. J. Turunen, A. Vasara, A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988). [CrossRef] [PubMed]
  7. A. Vasara, J. Turunen, A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef] [PubMed]
  8. A. J. Cox, D. C. Dibble, “Holographic reproduction of a diffraction-free beam,” Appl. Opt. 30, 1330–1332 (1991). [CrossRef] [PubMed]
  9. R. M. Herman, T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991). [CrossRef]
  10. K. Thewes, M. A. Karim, A. A. S. Awwal, “Diffraction-free beam generation using a refracting system,” Opt. Laser Technol. 23, 105–108 (1991). [CrossRef]
  11. G. Scott, M. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992). [CrossRef]
  12. N. Davidson, A. A. Friesem, E. Hasman, “Efficient formation of nondiffracting beams with uniform intensity along the propagation direction,” Opt. Commun. 88, 326–330 (1992). [CrossRef]
  13. A. J. Cox, J. D’Anna, “Constant-axial-intensity nondiffracting beam,” Opt. Lett. 17, 232–234 (1992). [CrossRef] [PubMed]
  14. R. M. Herman, T. A. Wiggins, “Apodization of diffractionless beams,” Appl. Opt. 31, 5913–5915 (1992). [CrossRef] [PubMed]
  15. Z. Jaroszewicz, J. Sochacki, A. Kołodziejzcyk, L. R. Staroński, “Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions,” Opt. Lett. 18, 1893–1895 (1993). [CrossRef] [PubMed]
  16. J. Rosen, “Synthesis of nondiffracting beams in free space,” Opt. Lett. 19, 369–371 (1994). [PubMed]
  17. R. M. Herman, T. A. Wiggins, “High-efficiency diffractionless beams of constant size and intensity,” Appl. Opt. 33, 7297–7306 (1994). [CrossRef] [PubMed]
  18. A. T. Friberg, “Stationary-phase analysis of generalized axicons,” J. Opt. Soc. Am. A 13, 743–750 (1996). [CrossRef]
  19. K. Kono, M. Ire, T. Minemoto, “Generation of nearly diffraction-free beams using a new optical system,” Opt. Rev. 4, 423–428 (1997). [CrossRef]
  20. A. G. Sedukhin, “Two-component axicon focusing of light radiation,” Optoelectron. Instrum. Data Process. No. 5 (Sept.–Oct.), 28–40 (1997) (translation of Russian journal “Autometriya”).
  21. J. N. Provost, J. L. de Bougrenet de la Tocnaye, “Optimal trade-off pupil for synthesis of nondiffracting beams in free space,” J. Opt. Soc. Am. A 14, 2748–2757 (1997). [CrossRef]
  22. Z. L. Horvath, M. Erdelyi, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997). [CrossRef]
  23. S. Yu. Popov, A. T. Friberg, “Apodization of generalized axicons to produce uniform axial line images,” Pure Appl. Opt. 7, 537–548 (1998). [CrossRef]
  24. S. Yu. Popov, A. T. Friberg, M. Honkanen, J. Lautanen, J. Turunen, B. Schnabel, “Apodized annular-aperture diffractive axicons fabricated by continuous-path-control electron beam lithography,” Opt. Commun. 154, 359–367 (1998). [CrossRef]
  25. M. Honkanen, J. Turunen, “Tandem systems for efficient generation of uniform-axial-intensity Bessel fields,” Opt. Commun. 154, 368–375 (1998). [CrossRef]
  26. W.-X. Cong, N.-X. Chen, B.-Yu. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362–2364 (1998). [CrossRef]
  27. Z. Jaroszewicz, J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15, 2383–2390 (1998). [CrossRef]
  28. Z. Jaroszewicz, J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a converging aberrated lens,” J. Opt. Soc. Am. A 16, 191–197 (1999). [CrossRef]
  29. A. G. Sedukhin, “Beam-preshaping axicon focusing,” J. Opt. Soc. Am. A 15, 3057–3066 (1998). [CrossRef]
  30. A. Papoulis, Systems and Transforms with Applications in Optics, 1st ed. (McGraw-Hill, New York, 1968), Chap. 7.
  31. J. Stamnes, Waves in Focal Regions (Hilger, Bristol, UK, 1986), Part III.
  32. M. Abramowitz, I. A. Stegun, eds. Handbook of Mathematical Functions (Dover, New York, 1972), Chap. 9.
  33. M. V. Perez, C. Comes-Reino, J. M. Cuadrado, “Diffraction patterns and zone plates produced by thin linear axicons,” Opt. Acta 33, 1161–1176 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited