OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 6 — Jun. 1, 2000
  • pp: 1086–1091

Intensity-based modal decomposition of optical beams in terms of Hermite–Gaussian functions

Xin Xue, Haiqing Wei, and Andrew G. Kirk  »View Author Affiliations


JOSA A, Vol. 17, Issue 6, pp. 1086-1091 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001086


View Full Text Article

Acrobat PDF (169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that when an arbitrary optical beam is decomposed into a superposition of Hermite–Gaussian functions, it is sufficient to record a number of intensity profiles sampled at various transverse planes to uniquely determine the relative modal weights. This result follows from the parity relation and the nature of the Gouy phase, in addition to the orthogonality of the Fourier-transformed intensity profiles associated with the Hermite–Gaussian modes.

© 2000 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.4070) Coherence and statistical optics : Modes

Citation
Xin Xue, Haiqing Wei, and Andrew G. Kirk, "Intensity-based modal decomposition of optical beams in terms of Hermite–Gaussian functions," J. Opt. Soc. Am. A 17, 1086-1091 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-6-1086


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Gori, “Collett–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980).
  2. E. Wolf, “New theory of partial coherence in the space-frequency domain. I: Spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982).
  3. A. Starikov and W. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982).
  4. E. G. Johnson, Jr., “Direct measurement of the spatial modes of a laser pulse: theory,” Appl. Opt. 25, 2967–2975 (1986).
  5. A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
  6. Y. Champagne, “Second-moment approach to the time-averaged spatial characterization of multiple-transverse-mode laser beams,” J. Opt. Soc. Am. A 12, 1707–1714 (1995).
  7. A. E. Siegman, Lasers (University Science, Mill Valley, Calif. 1986).
  8. F. Gori, M. Santarsiero, R. Borghi, and G. Guattari, “Intensity-based modal analysis of partially coherent beams with Hermite–Gaussian modes,” Opt. Lett. 23, 989–991 (1998).
  9. M. Santarsiero, F. Gori, R. Borghi, and G. Guattari, “Evaluation of the modal structure of light beams composed of incoherent mixtures of Hermite–Gaussian modes,” Appl. Opt. 38, 5272–5281 (1999).
  10. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed., A. Jeffrey, ed. (Academic, Boston, 1994).
  11. M. A. Golub, A. M. Prokhorov, I. N. Sisakyan, and V. A. Soifer, “Synthesis of spatial filters for investigation of the transverse mode composition of coherent radiation,” Sov. J. Quantum Electron. 12, 1208–1209 (1982).
  12. J. Turunen, E. Tervonen, and A. T. Friberg, “Coherence theoretic algorithm to determine the transverse-mode structure of lasers,” Opt. Lett. 14, 627–629 (1989).
  13. A. B. Buckman, Guided-Wave Photonics (Saunders College, New York, 1992).
  14. G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980).
  15. D. Burak and R. Binder, “Cold-cavity vectorial eigenmodes of VCSEL’s,” IEEE J. Quantum Electron. 33, 1205–1215 (1997).
  16. H. Nyquist, “Certain topics in telegraph transmission theory,” AIEE Trans. 47, 617–644 (1928).
  17. C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 37, 10–21 (1949).
  18. C. Gasquet and P. Witomski, Fourier Analysis and Applications: Filtering, Numerical Computation, Wavelets (Springer, New York, 1999).
  19. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, Englewood Cliffs, N.J., 1993).
  20. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2–14 (1990).
  21. L. W. Casperson, D. G. Hall, and A. A. Tovar, “Sinusoidal-Gaussian beams in complex optical systems,” J. Opt. Soc. Am. A 14, 3341–3348 (1997).
  22. B. Lü, B. Zhang, and H. Ma, “Beam-propagation factor and mode-coherence coefficients of hyperbolic-cosine–Gaussian beams,” Opt. Lett. 24, 640–642 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited