OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 7 — Jul. 1, 2000
  • pp: 1192–1201

Time multiplexing and parallelization in multifocal multiphoton microscopy

Alexander Egner and Stefan W. Hell  »View Author Affiliations

JOSA A, Vol. 17, Issue 7, pp. 1192-1201 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the imaging properties of high-aperture multifocal multiphoton microscopy on the basis of diffraction theory. Particular emphasis is placed on the relationship between the sectioning property and the distance between individual foci. Our results establish a relationship between the degree of parallelization and the axial resolution for both two- and three-photon excitation. In addition, we show quantitatively that if a matrix of temporal delays is inserted between the individual foci, it is, for the first time to our knowledge, possible to solve the classical conflict between the light budget and the sectioning property in three-dimensional microscopy and to provide a virtually unlimited density of foci at best axial resolution.

© 2000 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(320.7080) Ultrafast optics : Ultrafast devices
(350.5730) Other areas of optics : Resolution

Original Manuscript: September 2, 1999
Manuscript Accepted: February 23, 2000
Published: July 1, 2000

Alexander Egner and Stefan W. Hell, "Time multiplexing and parallelization in multifocal multiphoton microscopy," J. Opt. Soc. Am. A 17, 1192-1201 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Bewersdorf, R. Pick, S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998). [CrossRef]
  2. A. H. Buist, M. Müller, G. J. Brakenhoff, “Real-time two-photon microscopy,” J. Microsc. (Oxford) 192, 217–226 (1998). [CrossRef]
  3. M. Straub, S. W. Hell, “Multifocal multiphoton microscopy: a fast and efficient tool for 3-D fluorescence imaging,” Bioimages 6, 177–185 (1998). [CrossRef]
  4. M. Straub, S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998). [CrossRef]
  5. K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. (Oxford) 194, 528–531 (1999). [CrossRef]
  6. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  7. M. Petran, M. Hadravsky, M. D. Egger, R. Galambos, “Tandem-scanning reflected-light microscope,” J. Opt. Soc. Am. 58, 661–664 (1968). [CrossRef]
  8. G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988). [CrossRef]
  9. A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, “High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3D-imaging of single fluorescent molecule in real time,” Bioimages 4, 52–62 (1996).
  10. C. J. R. Sheppard, T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. (Oxford) 124, 107–117 (1981). [CrossRef]
  11. E. M. McCabe, D. T. Fewer, A. C. Ottewill, S. J. Hewlett, J. Hegarty, “Direct-view microscopy: optical section-ing strength for finite-sized, multiple-pinhole arrays,” J. Microsc. (Oxford) 184, 95–105 (1996). [CrossRef]
  12. Q. S. Hanley, P. J. Verveer, T. M. Jovin, “Optical sectioning fluorescence spectroscopy in a programmable array microscope,” Appl. Spectrosc. 52, 783–789 (1998). [CrossRef]
  13. P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. (Oxford) 189, 192–198 (1998). [CrossRef]
  14. T. Wilson, R. Juskaitis, M. Neil, M. Kozubek, “Confocal microscopy by aperture correlation,” Opt. Lett. 21, 1879–1881 (1996). [CrossRef] [PubMed]
  15. M. A. A. Neil, R. Juskaitis, T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998). [CrossRef]
  16. J. Bewersdorf, S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. (Oxford) 191, 28–38 (1998). [CrossRef]
  17. S. W. Hell, M. Booth, S. Wilms, J. C. M. Schnetter, A. K. Kirsch, D. J. Arndt-Jovin, T. M. Jovin, “Two-photon near- and far-field fluorescence microscopy with con- tinuous-wave excitation,” Opt. Lett. 23, 1238–1240 (1998). [CrossRef]
  18. K. König, T. W. Becker, P. Fischer, I. Reimann, K.-J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24, 113–115 (1999). [CrossRef]
  19. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993).
  20. J. T. Winthrop, C. R. Worthington, “Theory of Fresnel images. I. Plane periodic objects in monochromatic light,” J. Opt. Soc. Am. 55, 373–381 (1965). [CrossRef]
  21. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am. 57, 772–778 (1967). [CrossRef]
  22. E. Bonet, P. Andrés, J. C. Barreiro, A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106, 39–44 (1994). [CrossRef]
  23. M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion-precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–158 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited