OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 7 — Jul. 1, 2000
  • pp: 1202–1213

Imaging of transparent spheres through a planar interface using a high-numerical-aperture optical microscope

Ben Ovryn and Steven H. Izen  »View Author Affiliations

JOSA A, Vol. 17, Issue 7, pp. 1202-1213 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The details of a model used to predict the scattering of a plane polarized wave by a spherical particle as observed with a microscope are presented. The model accounts for the effect of a refractive interface on the outgoing scattered field and determines the image produced by a lens with high numerical aperture. The predictions of the model are verified by direct comparison with the experimentally observed scattering from polystyrene spheres in a fluid.

© 2000 Optical Society of America

OCIS Codes
(110.4100) Imaging systems : Modulation transfer function
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(180.6900) Microscopy : Three-dimensional microscopy
(290.4020) Scattering : Mie theory

Original Manuscript: September 27, 1999
Manuscript Accepted: February 28, 2000
Published: July 1, 2000

Ben Ovryn and Steven H. Izen, "Imaging of transparent spheres through a planar interface using a high-numerical-aperture optical microscope," J. Opt. Soc. Am. A 17, 1202-1213 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. R. Sheppard, T. Wilson, “The image of a single point in microscopes of large numerical aperture,” Proc. R. Soc. London Ser. A 379, 145–158 (1982). [CrossRef]
  2. C. J. R. Sheppard, H. J. Matthews, “Imaging in high-aperture optical systems,” J. Opt. Soc. Am. A 4, 1354–1360 (1987). [CrossRef]
  3. T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopes and Related Imaging Systems (Academic, New York, 1996).
  4. P. Török, T. Wilson, “Rigorous theory of axial resolution in confocal microscopes,” Opt. Commun. 137, 127–135 (1997). [CrossRef]
  5. T. Wilson, R. Juskaitis, P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopy,” Opt. Commun. 141, 298–313 (1997). [CrossRef]
  6. J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]
  7. T. G. Mason, J. H. van Zanten, D. Wirtz, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282–3285 (1997). [CrossRef]
  8. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37, 7410–7418 (1998). [CrossRef]
  9. S. A. Schaub, D. R. Alexander, J. P. Barton, “Theoretical model of the laser imaging of small aerosols: applications to aerosol sizing,” Appl. Opt. 30, 4777–4784 (1991). [CrossRef] [PubMed]
  10. M. D. Barnes, N. Lerner, W. B. Whitten, J. M. Ramsey, “A CCD based approach to high-precision size and refractive index determination of levitated microdroplets using Fraunhofer diffraction,” Rev. Sci. Instrum. 68, 2287–2290 (1997). [CrossRef]
  11. W. Weise, P. Zinin, T. Wilson, A. Briggs, S. Boseck, “Imaging of spheres with the confocal scanning optical microscope,” Opt. Lett. 21, 1800–1802 (1996). [CrossRef] [PubMed]
  12. Y. Hiraoka, J. W. Sedat, D. A. Agard, “Determination of three-dimensional imaging properties of a light microscope system,” Biophys. J. 57, 325–333 (1990). [CrossRef] [PubMed]
  13. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959). [CrossRef]
  14. R. Kant, “An analytical solution of vector diffraction for focusing optical systems,” J. Mod. Opt. 40, 337–347 (1993). [CrossRef]
  15. P. Török, S. J. Hewlett, P. Varga, “On the series expansion of high-aperture, vectorial diffraction integrals,” J. Mod. Opt. 44, 493–503 (1997). [CrossRef]
  16. B. Ovryn, J. D. Khaydarov, “Forward scattering particle image velocimetry (FSPIV): application of Mie and imaging theory to measure 3D velocities in microscopic flows using partially coherent illumination and high aperture optics,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C. J. Cogswell, J. Conchello, T. Wilson, eds., Proc. SPIE2984, 243–254 (1997). [CrossRef]
  17. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  18. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  19. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  20. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995).
  21. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).
  22. D. G. Flagello, T. Milster, A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996). [CrossRef]
  23. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6, 786–805 (1989). [CrossRef]
  24. H. Osterberg, J. E. Wilkins, “The resolving power of a coated objective,” J. Opt. Soc. Am. 39, 553–557 (1949). [CrossRef]
  25. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  26. M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives,” J. Opt. Soc. Am. A 3, 2086–2093 (1986). [CrossRef]
  27. S. H. Izen, B. Ovryn, “Imaging spheres with general incident wavefronts using a dipole decomposition,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing V, C. J. Cogswell, J. Conchello, T. Wilson, T. T. Lu, J. M. Lerner, eds., Proc. SPIE3261, 7–16 (1998). [CrossRef]
  28. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef] [PubMed]
  29. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited