OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 7 — Jul. 1, 2000
  • pp: 1265–1276

Multilocalization and the van Cittert–Zernike theorem. 1. Theory

Silvia A. Comastri, Juan M. Simon, and Catherine Tardin  »View Author Affiliations


JOSA A, Vol. 17, Issue 7, pp. 1265-1276 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001265


View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The complex degree of coherence and the resulting van Cittert–Zernike theorem are employed to analyze the exit of an arbitrary amplitude-division interferometer with two-beam interferences. Considering that the source is a periodic array of spatially incoherent slits and assuming negligible equivalent aberrations and no vignetting, an expression for the complex degree of coherence as a function of the position of an exit point is derived. Formulas for the location, fringe spacing, and fringe localization depth of the multilocalized fringes are given.

© 2000 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry

History
Original Manuscript: September 14, 1999
Revised Manuscript: March 9, 2000
Manuscript Accepted: March 9, 2000
Published: July 1, 2000

Citation
Silvia A. Comastri, Juan M. Simon, and Catherine Tardin, "Multilocalization and the van Cittert–Zernike theorem. 1. Theory," J. Opt. Soc. Am. A 17, 1265-1276 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-7-1265


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  2. M. Born, B. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1987).
  3. P. Hariharan, “Partial coherence and localization of fringes in two-beam interference,” J. Opt. Soc. Am. 59, 1384–1386 (1969). [CrossRef]
  4. P. Hariharan, Optical Interferometry (Academic, Sydney, Australia, 1985).
  5. W. H. Steel, Interferometry (Cambridge U. Press, London, 1985).
  6. J. C. Wyant, “Fringe localization,” Appl. Opt. 17, 1853–1853 (1978). [CrossRef] [PubMed]
  7. J. M. Simon, S. A. Comastri, “Localization of interference fringes,” Am. J. Phys. 48, 665–668 (1980). [CrossRef]
  8. J. M. Simon, S. A. Comastri, “Fringe localization depth,” Appl. Opt. 26, 5125–5129 (1987). [CrossRef] [PubMed]
  9. P. Hariharan, W. H. Steel, “Fringe localization depth: a comment,” Appl. Opt. 28, 29–29 (1989). [CrossRef] [PubMed]
  10. J. M. Simon, S. A. Comastri, “Interferometers: equivalent sine condition,” Appl. Opt. 27, 4725–4730 (1988). [CrossRef] [PubMed]
  11. J. M. Simon, M. C. Simon, R. M. Echarri, M. T. Garea, “Fringe localization in interferometers illuminated by a succession of incoherent line sources,” J. Mod. Opt. 45, 2245–2254 (1998). [CrossRef]
  12. J. M. Simon, R. M. Echarri, M. C. Simon, M. T. Garea, “Fringe localization in wave-front division interferometers,” Cuaderno de Optica 66E, Ediciones Previas, Laboratorio de Optica, FCEN-UBA (1999), available from the authors at the address on the title page.
  13. J. M. Simon, R. M. Echarri, P. A. Walsh, “Multilocalization of interference fringes in the Mach–Zehnder interferometer,” Cuaderno de Optica 67E, Ediciones Previas, Laboratorio de Optica, FCEN-UBA (1999), available from the authors at the address on the title page.
  14. J. Jahns, A. W. Lohmann, “The Lau effect (a diffraction experiment with incoherent illumination),” Opt. Commun. 28, 263–267 (1979). [CrossRef]
  15. K. Patorski, “Incoherent superposition of multiple self-imaging: Lau effect and moiré fringe explanation,” Opt. Acta 30, 745–758 (1983). [CrossRef]
  16. F. Gori, “Lau effect and coherence theory,” Opt. Commun. 31, 4–8 (1979). [CrossRef]
  17. R. Sudol, B. J. Thompson, “Lau effect: theory and experiment,” Appl. Opt. 20, 1107–1116 (1981). [CrossRef] [PubMed]
  18. A. W. Lohmann, J. Ojeda-Castaneda, “Spatial periodicities in partially coherent fields,” Opt. Acta 30, 475–479 (1983). [CrossRef]
  19. S. A. Comastri, J. M. Simon, R. Blendowske, “Generalized sine condition for image-forming systems with centering errors,” J. Opt. Soc. Am. A 16, 602–612 (1999). [CrossRef]
  20. J. M. Simon, S. A. Comastri, “Image-forming systems: matrix formulation of the optical invariant via Fourier optics,” J. Mod. Opt. 43, 2533–2541 (1996). [CrossRef]
  21. H. H. Hopkins, “Image formation by a general optical system. 1: General theory,” Appl. Opt. 24, 2491–2505 (1985). [CrossRef] [PubMed]
  22. J. M. Simon, S. A. Comastri, C. Tardin, “Multilocalization and the van Cittert–Zernike theorem. 2. Application to the Wollaston prism,” J. Opt. Soc. Am. A 17, 1277–1283 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited