OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 7 — Jul. 1, 2000
  • pp: 1312–1318

Residual phase variance in partial correction: application to the estimate of the light intensity statistics

Manuel P. Cagigal and Vidal F. Canales  »View Author Affiliations

JOSA A, Vol. 17, Issue 7, pp. 1312-1318 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (156 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Although the wave-front correction provided by an adaptive optics system should be as complete as possible, only a partial compensation is attainable in the visible. An estimate of the residual phase variance in the compensated wave front can be used to calibrate system performance, but it is not a simple task when errors affect the compensation process. We propose a simple method for estimation of the residual phase variance that requires only the measurement of the Strehl ratio value. It provides good results over the whole range of compensation degrees. The estimate of the effective residual phase variance is useful not only for system calibration but also for determining the light intensity statistics to be expected in the image as a function of the degree of compensation introduced.

© 2000 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(110.6770) Imaging systems : Telescopes

Original Manuscript: August 10, 1999
Revised Manuscript: March 23, 2000
Manuscript Accepted: March 23, 2000
Published: July 1, 2000

Manuel P. Cagigal and Vidal F. Canales, "Residual phase variance in partial correction: application to the estimate of the light intensity statistics," J. Opt. Soc. Am. A 17, 1312-1318 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Y. Wang, J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 78–87 (1978). [CrossRef]
  2. F. Rigaut, G. Rousset, J. C. Fontanella, J. P. Gaffard, F. Merkle, P. Lena, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).
  3. M. C. Roggemann, “Limited degree-of-freedom adaptive optics and image reconstruction,” Appl. Opt. 30, 4227–4233 (1991). [CrossRef] [PubMed]
  4. M. C. Roggemann, B. Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  5. A. Glindemann, “Improved performance of adaptive optics in the visible,” J. Opt. Soc. Am. A 11, 1370–1375 (1994). [CrossRef]
  6. P. Nisenson, R. Barakat, “Partial atmospheric correction with adaptive optics,” J. Opt. Soc. Am. A 4, 2249–2253 (1987). [CrossRef]
  7. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  8. J. Beckers, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 31, 13–62 (1993). [CrossRef]
  9. M. P. Cagigal, V. F. Canales, “Generalized Fried parameter after adaptive optics partial wave-front compensation,” J. Opt. Soc. Am. A 17, 903–910 (2000). [CrossRef]
  10. G. Rousset, P.-Y. Madec, D. Rabaud, “Adaptive optics partial correction simulation for two telescope interferometry,” in Proceedings of the ESO Symposium on High Resolution Imaging by Interferometry, J. M. Beckers, F. Merkle, eds. (European Southern Observatory, Garching, Germany, 1991), pp. 1095–1104.
  11. M. P. Cagigal, V. F. Canales, “Speckle statistics in partially corrected wave fronts,” Opt. Lett. 23, 1072–1074 (1998). [CrossRef]
  12. V. F. Canales, M. P. Cagigal, “Rician distribution to describe speckle statistics in adaptive optics,” Appl. Opt. 38, 766–771 (1999). [CrossRef]
  13. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North- Holland, Amsterdam, 1981), Vol. XIX, pp. 281–376.
  14. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990). [CrossRef]
  15. J. Conan, “Etude de la correction partielle en optique adaptative,” Ph.D. dissertation, Pub. 1995-1 (Office National d’Etudes et de Recherches Aerospatiales, Paris, 1995).
  16. G. C. Valley, S. M. Wandzura, “Spatial correlation of phase-expansion coefficients for propagation through atmospheric turbulence,” J. Opt. Soc. Am. 69, 712–717 (1979). [CrossRef]
  17. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993).
  18. J. W. Goodman, Statistical Optics (Wiley-Interscience, New York, 1985).
  19. F. Roddier, C. Roddier, “National Optical Astronomy Observatories (NOAO) Infrared Adaptive Optics Program II: modeling atmospheric effects in adaptive optics systems for astronomical telescopes,” in Advanced Technology Optical Telescopes III, L. D. Barr, ed., Proc. SPIE628, 298–304 (1986). [CrossRef]
  20. R. C. Smithson, M. L. Peri, R. S. Benson, “Quantitative simulation of image correction for astronomy with a segmented mirror,” Appl. Opt. 27, 1615–1620 (1988). [CrossRef] [PubMed]
  21. B. R. Frieden, Probability, Statistical Optics and Data Testing (Springer-Verlag, Berlin, 1983).
  22. V. F. Canales, M. P. Cagigal, “Photon statistics in partially compensated wave fronts,” J. Opt. Soc. Am. A 10, 2550–2555 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited