OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1413–1420

Radiometric theory of spatial coherence in free-space propagation

Hans M. Pedersen and Jakob J. Stamnes  »View Author Affiliations


JOSA A, Vol. 17, Issue 8, pp. 1413-1420 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001413


View Full Text Article

Enhanced HTML    Acrobat PDF (224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The radiometric theory of spatial coherence is presented with special attention to the validity of the approximations on which it is based. A new definition of the transverse coherence area is introduced and shown to be in general agreement with earlier definitions. In free-space propagation the product of the transverse coherence area and the intensity is shown to be constant along rectilinear rays, and, for radiation from uniform Lambert sources, a well-known paraxial formula for the transverse coherence area is extended to the extraparaxial domain. A decrease of the spatial coherence in free-space propagation takes place in regions with an increase of the intensity. For imaging systems this occurs in a finite part of image space whenever a real image of a diffusely radiating, extended object is formed at a finite distance.

© 2000 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.5630) Coherence and statistical optics : Radiometry
(110.4980) Imaging systems : Partial coherence in imaging
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: August 31, 1999
Revised Manuscript: April 19, 2000
Manuscript Accepted: April 19, 2000
Published: August 1, 2000

Citation
Hans M. Pedersen and Jakob J. Stamnes, "Radiometric theory of spatial coherence in free-space propagation," J. Opt. Soc. Am. A 17, 1413-1420 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-8-1413


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Devaney, A. T. Friberg, A. T. N. Kumar, E. Wolf, “Decrease in spatial coherence of light propagating in free space,” Opt. Lett. 22, 1672–1673 (1997). [CrossRef]
  2. L. S. Dolin, “Beam description of weakly-inhomogeneous wave fields,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 7, 559–563 (1964).
  3. Yu. N. Barabanenkov, “On the spectral theory of radiation transfer equations,” Sov. Phys. JETP 29, 679–684 (1969) [Zh. Eksp. Teor. Fiz. 56, 1262–1272 (1969)].
  4. G. I. Ovchinnikov, V. I. Tatarskii, “On the problem of the relationship between coherence theory and the radiation-transfer equation,” Radiophys. Quantum Electron. 15, 1087–1089 (1972)[Izv. Vyssh. Uchebn. Zaved. Radiofiz. 15, 1419–1421 (1972)]. [CrossRef]
  5. H. M. Pedersen, “Radiometry and coherence for quasi-homogeneous scalar wavefields,” Opt. Acta 29, 877–892 (1981).
  6. H. M. Pedersen, “Exact geometrical theory of free-space radiative energy transfer,” J. Opt. Soc. Am. A 8, 176–185 (1991); errata 8, 1518 (1991). [CrossRef]
  7. H. M. Pedersen, “Propagation of generalized specific intensity in refractive media,” J. Opt. Soc. Am. A 9, 1623–1625 (1992). [CrossRef]
  8. H. M. Pedersen, “Geometrical theory of fields radiated from three-dimensional, quasi-homogeneous sources,” J. Opt. Soc. Am. A 9, 1626–1632 (1992). [CrossRef]
  9. H. M. Pedersen, J. J. Stamnes, “van Cittert–Zernike theorem for quasi-homogeneous wavefields and the modified Debye integral,” Pure Appl. Opt. 1, 13–28 (1992). [CrossRef]
  10. H. M. Pedersen, O. J. Løkberg, “Coherence and radiative energy transfer for linear surface gravity waves in water of constant depth,” J. Phys. A 25, 5263–5278 (1992). [CrossRef]
  11. H. M. Pedersen, “Simplified geometrical theory of radiated fields from three-dimensional quasi-homogeneous sources,” Pure Appl. Opt. 2, 179–184 (1993). [CrossRef]
  12. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
  13. E. Wolf, “New theory of radiative energy transfer in free electromagnetic fields,” Phys. Rev. D 13, 869–886 (1976). [CrossRef]
  14. E. Collett, J. T. Foley, E. Wolf, “On an investigation of Tatarskii into the relationship between coherence theory and the theory of radiative transfer,” J. Opt. Soc. Am. 67, 475–477 (1977). [CrossRef]
  15. W. H. Carter, E. Wolf, “Coherence and radiometry with quasi-homogeneous planar sources,” J. Opt. Soc. Am. 67, 785–796 (1977). [CrossRef]
  16. A. T. Friberg, “On the existence of a radiance function for finite planar sources of arbitrary state of coherence,” J. Opt. Soc. Am. 69, 192–198 (1979). [CrossRef]
  17. A. T. Friberg, “On the generalized radiance associated with radiation from a quasi-homogeneous source,” Opt. Acta 28, 261–277 (1981). [CrossRef]
  18. R. G. Littlejohn, R. Winston, “Corrections to classical radiometry,” J. Opt. Soc. Am. A 10, 2024–2037 (1993). [CrossRef]
  19. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975).
  20. H. M. Pedersen, J. J. Stamnes, “Reciprocity principles for focused wavefields and the modified Debye integral,” Opt. Acta 30, 1434–1454 (1983). [CrossRef]
  21. J. J. Stamnes, Waves in Focal Regions (Adam Hilger, Bristol, UK, 1986).
  22. H. P. Baltes, H. A. Ferwerda, A. S. Glass, B. Steinle, “Retrieval of structural information from the far-zone intensity and coherence of scattered radiation,” Opt. Acta 28, 11–28 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited