OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1440–1453

Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration

Mikhail A. Vorontsov, Gary W. Carhart, Marc Cohen, and Gert Cauwenberghs  »View Author Affiliations


JOSA A, Vol. 17, Issue 8, pp. 1440-1453 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001440


View Full Text Article

Acrobat PDF (1346 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wave-front distortion compensation using direct system performance metric optimization is studied both theoretically and experimentally. It is shown how different requirements for wave-front control can be incorporated, and how information from different wave-front sensor types can be fused, within a generalized gradient descent optimization paradigm. In our experiments a very-large-scale integration (VLSI) system implementing a simultaneous perturbation stochastic approximation optimization algorithm was applied for real-time adaptive control of multielement wave-front correctors. The custom-chip controller is used in two adaptive laser beam focusing systems, one with a 127-element liquid-crystal phase modulator and the other with beam steering and 37-control channel micromachined deformable mirrors. The submillisecond response time of the micromachined deformable mirror and the parallel nature of the analog VLSI control architecture provide for high-speed adaptive compensation of dynamical phase aberrations of a laser beam under conditions of strong intensity scintillations. Experimental results demonstrate improvement of laser beam quality at the receiver plane in the spectral band up to 60 Hz.

© 2000 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(110.0110) Imaging systems : Imaging systems

Citation
Mikhail A. Vorontsov, Gary W. Carhart, Marc Cohen, and Gert Cauwenberghs, "Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration," J. Opt. Soc. Am. A 17, 1440-1453 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-8-1440


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. H. Shapiro, “Reciprocity of the turbulent atmosphere,” J. Opt. Soc. Am. 61, 492–495 (1971).
  2. J. W. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
  3. In the nonlinear-optics-based or dynamical-holography-based phase conjugation systems, we have true wave-front conjugation (both phase conjugation and amplitude correction); see, for example, B. Y. Zeldovich, N. V. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation, Vol. 42 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1985).
  4. C. A. Primmerman, T. R. Price, R. A. Humphreys, B. G. Zollars, H. T. Barclay, and J. Herrmann, “Atmospheric-compensation experiments in strong-scintillation conditions,” Appl. Opt. 34, 2081–2088 (1995).
  5. B. M. Levine, A. Wirth, H. DaSilva, F. M. Landers, S. Kahalas, T. L. Bruno, P. R. Barbier, D. W. Rush, P. Polak-Dingels, G. L. Burdge, and D. P. Looze, “Active compensation for horizontal line-of-sight turbulence over near-ground paths,” in Propagation and Imaging through the Atmosphere II, L. R. Bissonnette, ed., Proc. SPIE 3233, 221–232 (1998).
  6. N. B. Baranova, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkunov, and B. Ya. Zel’dovich, “Wave-front dislocations: topological limitations for adaptive systems with phase conjugation,” J. Opt. Soc. Am. 73, 525–528 (1983).
  7. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15, 2759–2768 (1998).
  8. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64, 1200–1210 (1974).
  9. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, “Adaptive imaging system for phase-distorted extended source/multiple distance objects,” Appl. Opt. 36, 3319–3328 (1997).
  10. M. C. Roggemann and B. M. Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  11. G. W. Carhart and M. A. Vorontsov, “Synthetic imaging: non-adaptive anisoplanatic image correction in atmospheric turbulence,” Opt. Lett. 23, 745–747 (1998).
  12. R. K. Tyson, Principles of Adaptive Optics (Academic, Boston, 1991).
  13. R. Q. Fugate, “Laser beacon adaptive optics,” Opt. Photon. News 5(6), 14–19 (1994).
  14. M. C. Roggemann, V. M. Bright, S. R. Hick, and W. D. Cowan, “Use of micro-electromechanical deformable mirrors to control aberrations in optical system,” Opt. Eng. 36, 1326–1338 (1997).
  15. G. B. Love, J. S. Fender, and S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photon. News (October 1995), pp. 16–21.
  16. H. J. Kushner and D. S. Clark, Stochastic Approximation Methods for Constrained and Unconstrained Systems (Springer-Verlag, New York, 1978).
  17. J. C. Spall, “Multivariate stochastic approximation using a simultaneous perturbation gradient approximation,” IEEE Trans. Autom. Control 37, 332–341 (1992).
  18. J. C. Spall, “A stochastic approximation technique for generating maximum likelihood parameter estimates,” in Proceedings of the American Control Conference (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 1161–1167.
  19. G. Cauwenberghs, “A fast stochastic error-descent algorithm for supervised learning and optimization,” in Advances in Neural Information Processing Systems, S. J. Hanson, J. D. Cowan, and C. L. Giles, eds. (Morgan Kaufmann, San Mateo, Calif, 1993), Vol. 5, pp. 244–251.
  20. J. C. Spall, “Adaptive stochastic approximation by the simultaneous perturbation method,” IEEE Trans. Autom. Control 45 (to be published); in condensed form in Proceedings of the IEEE Conference on Decision and Control (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 3872–3879.
  21. B. Flower and M. Jabri, “Summed weight neuron perturbation: an O(n) improvement over weight perturbation,” in Advances in Neural Information Processing Systems, S. J. Hanson, J. D. Cowan, and C. L. Giles, eds. (Morgan Kaufmann, San Meteo, Calif., 1993), Vol. 5, pp. 212–219.
  22. G. Cauwenberghs, “A learning analog neural network chip with continuous-recurrent dynamics,” in Advances in Neural Information Processing Systems, S. J. Hanson, J. D. Cowan, and C. L. Giles, eds., (Morgan Kaufmann, San Mateo, Calif. 1994), Vol. 6, pp. 858–865.
  23. G. Cauwenberghs, “Analog VLSI stochastic perturbative learning architectures,” Int. J. Analog Integr. Circuits Signal Process. 13, 195–209 (1997).
  24. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907–909 (1997).
  25. V. I. Polejaev and M. A. Vorontsov, “Adaptive active imaging system based on radiation focusing for extended targets,” in Adaptive Optics and Applications, R. Tyson and R. Fugate, eds., Proc. SPIE 3126, 216–220 (1997).
  26. B. M. Ter Haar Romey, ed., Geometry-Driven Diffusion in Computer Vision (Kluwer Academic, Dordrecht, The Netherlands, 1994).
  27. Special issue on partial differential equations and geometry-driven diffusion in image processing and analysis, IEEE Trans. Image Process. 7 (1998).
  28. T. R. O’Meara, “The multi-dither principle in adaptive optics,” J. Opt. Soc. Am. 67, 306–315 (1977).
  29. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, “Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field,” J. Opt. Soc. Am. A 13, 1456–1466 (1996).
  30. J. E. Pearson and S. Hansen, “Experimental studies of a deformable-mirror adaptive optical system,” J. Opt. Soc. Am. 67, 325–333 (1977).
  31. S. A. Kokorowski, M. E. Pedinoff, and J. E. Pearson, “Analytical, experimental and computer simulation results on the interactive effects of speckle with multi-dither adaptive optics systems,” J. Opt. Soc. Am. 67, 333–345 (1977).
  32. G. W. Carhart, J. C. Ricklin, V. P. Sivokon, and M. A. Vorontsov, “Parallel perturbation gradient descent in algorithm for adaptive wavefront correction,” in Adaptive Optics and Applications, R. Tyson and R. Fugate, eds., Proc. SPIE 3126, 221–227 (1997).
  33. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel gradient descent technique for high-resolution wavefront phase distortion correction,” J. Opt. Soc. Am. A 15, 2745–2758 (1998).
  34. This is not necessarily true if the division form J͂j=δJj/δuj is used.
  35. G. Andreou and K. A. Boahen, “Translinear circuits in subthreshold MOS,” Analog Integr. Circuits Signal Process. 9, 141–166 (1996).
  36. G. Cauwenberghs and M. A. Bayoumi, eds., Learning on Silicon (Kluwer Academic, Boston, 1999).
  37. M. A. Vorontsov, “High-resolution adaptive phase distortion compensation using a diffractive-feedback system: experimental results,” J. Opt. Soc. Am. A 16, 2567–2573 (1999).
  38. G. Cauwenberghs, “Analog VLSI recurrent neural network learning a continuous-time trajectory,” IEEE Trans. Neural Netw. 41, 827–829 (1994).
  39. R. T. Edwards, M. Cohen, G. Cauwenberghs, M. A. Vorontsov, and G. W. Carhart, “Analog VLSI parallel stochastic optimization for adaptive optics,” in Learning on Silicon, G. Cauwenberghs and M. A. Bayoumi, eds. (Kluwer Academic, Boston, 1999), Chap. 1, pp. 359–382.
  40. G. W. Carhart, M. A. Vorontsov, R. T. Edwards, M. Cohen, and G. Cauwenberghs, “Adaptive wavefront control using a VLSI implementation of the parallel perturbation gradient descent algorithm,” in High-Resolution Wavefront Control: Methods, Devices, and Applications, J. Gonglewski and M. Vorontsov, eds., Proc. SPIE 3760, 61–66 (1999).
  41. Users Manual, Meadowlark Optics Inc. HEX127 phase modulator, 1997.
  42. G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromachined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997).
  43. L. Zhu, P. Sun, D. Bartsch, W. R. Freeman, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited