OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1505–1515

Motion perception at scotopic light levels

Karl R. Gegenfurtner, Helmut M. Mayser, and Lindsay T. Sharpe  »View Author Affiliations


JOSA A, Vol. 17, Issue 9, pp. 1505-1515 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001505


View Full Text Article

Acrobat PDF (191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although the spatial and temporal properties of rod-mediated vision have been extensively characterized, little is known about scotopic motion perception. To provide such information, we determined thresholds for the detection and identification of the direction of motion of sinusoidal grating patches moving at speeds from 1 to 32 deg/s, under scotopic light levels, in four different types of observers: three normals, a rod monochromat (who lacks all cone vision), an S-cone monochromat (who lacks M- and L-cone vision), and four deuteranopes (who lack M-cone vision). The deuteranopes, whose motion perception does not differ from that of normals, allowed us to measure rod and L-cone thresholds under silent substitution conditions and to compare directly the perceived velocity for moving stimuli detected by either rod or cone vision at the same light level. We find, for rod as for cone vision, that the direction of motion can be reliably identified very near to detection threshold. In contrast, the perceived velocity of rod-mediated stimuli is reduced by approximately 20% relative to cone-mediated stimuli at temporal frequencies below 4 Hz and at all intensity levels investigated (0.92 to −1.12 log cd m−2). Most likely, the difference in velocity perception is distal in origin because rod and cone signals converge in the retina and further processing of their combined signals in the visual cortex is presumably identical. To account for the difference, we propose a model of velocity, in which the greater temporal averaging of rod signals in the retina leads to an attenuation of the motion signal in the detectors tuned to high velocities.

© 2000 Optical Society of America

OCIS Codes
(330.1880) Vision, color, and visual optics : Detection
(330.4150) Vision, color, and visual optics : Motion detection
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5510) Vision, color, and visual optics : Psychophysics

Citation
Karl R. Gegenfurtner, Helmut M. Mayser, and Lindsay T. Sharpe, "Motion perception at scotopic light levels," J. Opt. Soc. Am. A 17, 1505-1515 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-9-1505

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited