OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1545–1555

Variations in normal color vision. II. Unique hues

Michael A. Webster, Eriko Miyahara, Gokhan Malkoc, and Vincent E. Raker  »View Author Affiliations

JOSA A, Vol. 17, Issue 9, pp. 1545-1555 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examined individual differences in the color appearance of nonspectral lights and asked how they might be related to individual differences in sensitivity to chromatic stimuli. Observers set unique hues for moderately saturated equiluminant stimuli by varying their hue angle within a plane defined by the LvsM and SvsLM cone-opponent axes that are thought to characterize early postreceptoral color coding. Unique red settings were close to the +L pole of the LvsM axis, while green, blue, and yellow settings clustered along directions intermediate to the LvsM and SvsLM axes and thus corresponded to particular ratios of LvsM to SvsLM activity. Interobserver differences in the unique hues were substantial. However, no relationship was found between hue settings and relative sensitivity to the LvsM and SvsLM axes. Moreover, interobserver variations in different unique hues were uncorrelated and were thus inconsistent with a common underlying factor such as relative sensitivity or changes in the spectral sensitivities of the cones. Thus for the moderately saturated lights we tested, the unique hues appear largely unconstrained by normal individual differences in the cone-opponent axes. In turn, this suggests that the perceived hue for these stimuli does not depend on fixed (common) physiological weightings of the cone-opponent axes or on fixed (common) color signals in the environment.

© 2000 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.1730) Vision, color, and visual optics : Colorimetry
(330.5020) Vision, color, and visual optics : Perception psychology
(330.7310) Vision, color, and visual optics : Vision

Original Manuscript: October 14, 1999
Revised Manuscript: May 17, 2000
Manuscript Accepted: May 17, 2000
Published: September 1, 2000

Michael A. Webster, Eriko Miyahara, Gokhan Malkoc, and Vincent E. Raker, "Variations in normal color vision. II. Unique hues," J. Opt. Soc. Am. A 17, 1545-1555 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Abramov, J. Gordon, “Color appearance: on seeing red—or yellow, or green, or blue,” Annu. Rev. Psychol. 45, 451–485 (1994). [CrossRef]
  2. L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957). [CrossRef] [PubMed]
  3. E. Hering, Outlines of a Theory of the Light Sense (Harvard U. Press, Cambridge, Mass., 1964).
  4. M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Systems 7, 587–634 (1996). [CrossRef]
  5. D. H. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, P. Kaiser, R. M. B. Boynton, eds. (Optical Society of America, Washington D.C., 1996), pp. 563–579.
  6. M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994). [CrossRef] [PubMed]
  7. R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993). [CrossRef] [PubMed]
  8. S. L. Guth, “Model for color vision and light adaptation,” J. Opt. Soc. Am. A 8, 976–993 (1991). [CrossRef] [PubMed]
  9. J. Pokorny, V. C. Smith, “Evaluation of single-pigment shift model of anomalous trichromacy,” J. Opt. Soc. Am. 67, 1196–1209 (1977). [CrossRef] [PubMed]
  10. J. D. Mollon, “Color vision,” Annu. Rev. Psychol. 33, 41–85 (1982). [CrossRef] [PubMed]
  11. H.-C. Lee, “A computational model for opponent color encoding,” in Advanced Printing of Conference Summaries, SPSE’s 43rd Annual Conference (Society for Imaging Science and Technology, Springfield, Va., 1990), pp. 178–181.
  12. R. N. Shepard, “The perceptual organization of colors: an adaptation to regularities of the terrestrial world?” in The Adapted Mind, J. Barkow, L. Cosmides, J. Tooby, eds. (Oxford U. Press, Oxford, UK, 1992), pp. 495–532.
  13. D. M. Purdy, “Spectral hues as a function of intensity,” J. Psychol. 43, 541–559 (1931). [CrossRef]
  14. B. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the lifespan,” J. Opt. Soc. Am. A 7, 305–311 (1990). [CrossRef] [PubMed]
  15. V. C. Smith, J. Pokorny, “Chromatic discrimination axes, CRT phosphor spectra, and individual variation in color vision,” J. Opt. Soc. Am. A 12, 27–35 (1995). [CrossRef]
  16. M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988). [CrossRef] [PubMed]
  17. M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000). [CrossRef]
  18. G. Jordan, J. D. Mollon, “Rayleigh matches and unique green,” Vision Res. 35, 613–620 (1995). [CrossRef] [PubMed]
  19. J. D. Mollon, G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickenson, I. Murray, D. Carden, eds. (Taylor & Francis, London, 1997), pp. 381–392.
  20. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000). [CrossRef]
  21. S. Otake, C. M. Cicerone, “L and M cone relative numerosity and red–green opponency from fovea to midperiphery in the human retina,” J. Opt. Soc. Am. A 17, 615–627 (2000). [CrossRef]
  22. J. Pokorny, V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53–57 (1987).
  23. M. A. Webster, J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991). [CrossRef] [PubMed]
  24. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef] [PubMed]
  25. S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity of unique and other constant hues,” Vision Res. 24, 479–489 (1984). [CrossRef]
  26. E. J. Chichilnisky, B. A. Wandell, “Trichromatic opponent color classification,” Vision Res. 39, 3444–3458 (1999). [CrossRef]
  27. R. L. De Valois, K. K. De Valois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997). [CrossRef] [PubMed]
  28. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974). [CrossRef] [PubMed]
  29. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975). [CrossRef] [PubMed]
  30. C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Farbe 34, 59–66 (1987).
  31. D. I. A. MacLeod, M. A. Webster, “Factors influencing the color matches of normal observers,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 81–92.
  32. W. S. Stiles, J. M. Burch, “N.P.L. colour matching investigation: final report (1958),” Opt. Acta6, 1–26 (1959). [CrossRef]
  33. P. Kay, B. Berlin, L. Maffi, W. Merrifield, “Color naming across languages,” in Color Categories in Thought and Language, C. L. Hardin, L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 21–56.
  34. D. B. Judd, D. L. MacAdam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964). [CrossRef]
  35. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964). [CrossRef]
  36. S. K. Shevell, R. A. Humanski, “Color perception under chromatic adaptation: red/green equilibria with adapted short-wavelength-sensitive cones,” Vision Res. 28, 1345–1356 (1988). [CrossRef] [PubMed]
  37. J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979). [CrossRef] [PubMed]
  38. I. Abramov, J. Gordon, H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991). [CrossRef] [PubMed]
  39. C. F. I. Stromeyer, J. Lee, R. T. Eskew, “Peripheral chromatic sensitivity for flashes: a post-receptoral red–green asymmetry,” Vision Res. 32, 1865–1873 (1992). [CrossRef] [PubMed]
  40. C. E. Harlow, V. J. Volbrecht, J. L. Nerger, “What determines the population variability in the locus of unique green?” Invest. Ophthalmol. Visual Sci. Suppl. 40, S355 (1999).
  41. I. Abramov, J. Gordon, B. E. Schefrin, J. S. Werner, “Spectral loci of unique hues: population statistics,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 2166 (1994).
  42. B. E. Schefrin, A. J. Adams, J. S. Werner, “Anomalies beyond sites of chromatic opponency contribute to sensitivity losses of an S-cone pathway in diabetes,” Clin. Vision Sci. 6, 219–228 (1991).
  43. E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998). [CrossRef] [PubMed]
  44. M. A. Crognale, J. B. Nolan, M. A. Webster, M. Neitz, J. Neitz, “Color vision and genetics in a case of congenital optic nerve dystrophy,” Color Res. Appl. (to be published).
  45. M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited