OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1594–1605

Nonlinear effects of phase blurring on Fourier transform holograms

Markus Duelli, Li Ge, and Robert W. Cohn  »View Author Affiliations


JOSA A, Vol. 17, Issue 9, pp. 1594-1605 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001594


View Full Text Article

Acrobat PDF (1021 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Liquid-crystal light valves can have intensity-dependent resolution. We find for a nematic liquid-crystal light valve that this effect is well modeled as a phase that has been blurred by a linear space-invariant filter. The phase point-spread function is measured and is used in simulations to demonstrate that it introduces intermodulation products to the diffraction patterns of computer-generated Fourier transform holograms. Also, the influence of phase blurring on a pseudorandom-encoding algorithm is evaluated in closed form. This analysis applied to a spot array generator design indicates that nonlinear effects are negligible only if the diameter of the point-spread function is a small fraction of the pixel spacing.

© 2000 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(100.3020) Image processing : Image reconstruction-restoration
(160.3710) Materials : Liquid crystals
(230.6120) Optical devices : Spatial light modulators

Citation
Markus Duelli, Li Ge, and Robert W. Cohn, "Nonlinear effects of phase blurring on Fourier transform holograms," J. Opt. Soc. Am. A 17, 1594-1605 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-9-1594


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Casasent, “Performance evaluation of spatial light modulators,” Appl. Opt. 18, 2445–2453 (1979).
  2. A. D. Fisher and J. N. Lee, “The current status of two-dimensional spatial light modulator technology,” in Optical and Hybrid Computing, H. H. Szu, ed., Proc. SPIE 634, 352–371 (1986).
  3. T. D. Hudson and D. A. Gregory, “Optically addressed spatial light modulators,” Opt. Laser Technol. 23, 297–302 (1991).
  4. D. V. Wick, T. Martinez, M. V. Wood, J. M. Wilkes, M. T. Gruneisen, V. L. Berenberg, M. V. Vasil’ev, A. P. Onokhov, and L. A. Beresnev, “Deformed-helix ferroelectric liquid-crystal spatial light modulator that demonstrates high diffraction efficiency and 370-line pairs/mm resolution,” Appl. Opt. 38, 3798–3803 (1999).
  5. R. W. Cohn, A. A. Vasiliev, W. Liu, and D. L. Hill, “Fully complex diffractive optics by means of patterned diffuser arrays: encoding concept and implications for fabrication,” J. Opt. Soc. Am. A 14, 1110–1123 (1997).
  6. R. W. Cohn and L. G. Hassebrook, “Representations of fully complex functions on real-time spatial light modulators,” in Optical Information Processing, F. T. S. Yu and S. Jutamulia, eds. (Cambridge U. Press, Cambridge, UK, 1998), Chap. 15, pp. 396–432.
  7. W. J. Dallas, “Computer-generated holograms,” in The Computer in Optical Research, B. R. Frieden, ed. (Springer-Verlag, Berlin, 1980), Chap. 6, pp. 291–366.
  8. R. W. Cohn and M. Liang, “Pseudorandom phase-only encoding of real-time spatial light modulators,” Appl. Opt. 35, 2488–2497 (1996).
  9. R. W. Cohn and M. Duelli, “Ternary pseudorandom encoding of Fourier transform holograms,” J. Opt. Soc. Am. A 16, 71–84; “errata,” 16, 1089–1090 (1999).
  10. M. Duelli, M. Reece, and R. W. Cohn, “A modified minimum distance criterion for blended random and nonrandom encoding,” J. Opt. Soc. Am. A 16, 2425–2438 (1999).
  11. R. W. Cohn and M. Liang, “Approximating fully complex spatial modulation with pseudorandom phase-only modulation,” Appl. Opt. 33, 4406–4415 (1994).
  12. G. Paul-Hus and Y. Sheng, “Optical on-axis real-time phase-dominant correlator using liquid crystal television,” Opt. Eng. 32, 2165–2172 (1993).
  13. R. W. Cohn and J. L. Horner, “Effects of systematic phase errors on phase-only correlation,” Appl. Opt. 33, 5432–5439 (1994).
  14. E. Shafir, H. Bernstein, A. A. Friesem, and H. Grubel, “Method for measuring the spatial frequency response of phase-modulating spatial light modulators,” Opt. Eng. 27, 71–74 (1988).
  15. L. G. Hassebrook, M. E. Lhamon, R. C. Daley, R. W. Cohn, and M. Liang, “Random phase encoding of composite fully-complex filters,” Opt. Lett. 21, 272–274 (1996).
  16. R. W. Cohn, “Analyzing the encoding range of amplitude-phase coupled spatial light modulators,” Opt. Eng. 38, 361–367 (1999).
  17. M. Duelli, D. L. Hill, and R. W. Cohn, “Frequency swept measurements of coherent diffraction patterns,” Appl. Opt. 37, 8131–8133 (1998).
  18. R. R. Read, J. L. Shanks, and S. Treitel, “Two dimensional recursive filtering,” in Picture Processing and Digital Filtering, Vol. 6 of Topics in Applied Physics, T. S. Huang, ed. (Springer-Verlag, Berlin, 1979), pp. 131–176.
  19. J. S. Lim, “Image restoration,” in Two-Dimensional Signal- and Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1990), pp. 524–588.
  20. A. V. Oppenheim and R. W. Shafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 530.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited