OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1606–1616

Improved-fidelity error diffusion through blending with pseudorandom encoding

Li Ge, Markus Duelli, and Robert W. Cohn  »View Author Affiliations

JOSA A, Vol. 17, Issue 9, pp. 1606-1616 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (801 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Error diffusion (ED) and pseudorandom encoding (PRE) methods of designing Fourier transform holograms are compared in terms of their properties and the optical performance of the resulting far-field diffraction patterns. Although both methods produce a diffuse noise pattern due to the error between the desired fully complex pattern and the encoded modulation, the PRE errors reconstruct uniformly over the nonredundant bandwidth of the discrete-pixel spatial light modulator, while the ED errors reconstruct outside the window of the designed diffraction pattern. Combining the two encoding methods produces higher-fidelity diffraction patterns than either method produces individually. For some designs the fidelity of the ED–PRE algorithm is even higher over the entire nonredundant bandwidth than for the previously reported [J. Opt. Soc. Am. A 16, 2425 (1999)] minimum-distance-PRE algorithm.

© 2000 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(090.1760) Holography : Computer holography
(230.6120) Optical devices : Spatial light modulators

Original Manuscript: December 17, 1999
Revised Manuscript: May 8, 2000
Manuscript Accepted: May 8, 2000
Published: September 1, 2000

Li Ge, Markus Duelli, and Robert W. Cohn, "Improved-fidelity error diffusion through blending with pseudorandom encoding," J. Opt. Soc. Am. A 17, 1606-1616 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Cohn, M. Liang, “Approximating fully complex spatial modulation with pseudorandom phase-only modulation,” Appl. Opt. 33, 4406–4415 (1994). [CrossRef] [PubMed]
  2. L. G. Hassebrook, M. E. Lhamon, R. C. Daley, R. W. Cohn, M. Liang, “Random phase encoding of composite fully complex filters,” Opt. Lett. 21, 272–274 (1996). [CrossRef] [PubMed]
  3. R. W. Cohn, W. Liu, “Pseudorandom encoding of fully complex modulation to bi-amplitude phase modulators,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 237–240.
  4. R. W. Cohn, M. Liang, “Pseudorandom phase-only encoding of real-time spatial light modulators,” Appl. Opt. 35, 2488–2497 (1996). [CrossRef] [PubMed]
  5. R. W. Cohn, “Pseudorandom encoding of complex valued functions onto amplitude coupled phase modulators,” J. Opt. Soc. Am. A 15, 868–883 (1998). [CrossRef]
  6. R. W. Cohn, M. Duelli, “Ternary pseudorandom encoding of Fourier transform holograms,” J. Opt. Soc. Am. A 16, 71–84 (1999); Errata, 1089–1090 (1999). [CrossRef]
  7. R. W. Cohn, “Analyzing the encoding range of amplitude-phase coupled spatial light modulators,” Opt. Eng. 38, 361–367 (1999). [CrossRef]
  8. M. Duelli, M. Reece, R. W. Cohn, “A modified minimum-distance criterion for blended random and nonrandom encoding,” J. Opt. Soc. Am. A 16, 2425–2438 (1999). [CrossRef]
  9. R. W. Cohn, L. G. Hassebrook, “Representations of fully complex functions on real-time spatial light modulators,” in Optical Information Processing, F. T. S. Yu, S. Jutamulia, eds. (Cambridge U. Press, Cambridge, UK, 1998), Chap. 15, pp. 396–432.
  10. B. R. Brown, A. W. Lohmann, “Complex spatial filter,” Appl. Opt. 5, 967–969 (1966). [CrossRef] [PubMed]
  11. W. J. Dallas, “Computer-generated holograms,” in The Computer in Optical Research, B. R. Frieden, ed. (Springer-Verlag, Berlin, 1980), Chap. 6, pp. 291–366.
  12. R. D. Juday, “Optimal realizable filters and the minimum Euclidean distance principle,” Appl. Opt. 32, 5100–5111 (1993). [CrossRef] [PubMed]
  13. L. B. Lesem, P. M. Hirsch, J. A. Jordon, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969). [CrossRef]
  14. J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984). [CrossRef] [PubMed]
  15. R. W. Floyd, L. Steinberg, “An adaptive algorithm for spatial grayscale,” Proc. Soc. Inf. Disp. 17, 78–84 (1976).
  16. R. Hauk, O. Bryngdahl, “Computer-generated holograms with pulse density modulation,” J. Opt. Soc. Am. A 1, 5–10 (1984). [CrossRef]
  17. S. Weissbach, F. Wyrowski, O. Bryngdahl, “Digital phase holograms: coding and quantization with an error diffusion concept,” Opt. Commun. 72, 37–41 (1989). [CrossRef]
  18. S. Weissbach, F. Wyrowski, “Error diffusion procedure: theory and applications in optical signal processing,” Appl. Opt. 31, 2518–2534 (1992). [CrossRef] [PubMed]
  19. A. G. Kirk, A. K. Powell, T. J. Hall, “The design of quasi-periodic Fourier plane array generators,” in Optical Information Technology, S. D. Smith, R. F. Neale, eds. (Springer-Verlag, Berlin, 1993), pp. 47–56.
  20. E. Barnard, “Optimal error diffusion for computer-generated holograms,” J. Opt. Soc. Am. A 5, 1803–1811 (1988). [CrossRef]
  21. M. Duelli, R. W. Cohn, “Pseudorandom encoding for real-valued ternary spatial light modulators,” Appl. Opt. 38, 3804–3809 (1999). [CrossRef]
  22. F. Wyrowski, “Upper bound of the diffraction efficiency of diffractive phase elements,” Opt. Lett. 16, 1915–1917 (1991). [CrossRef] [PubMed]
  23. J. A. Davis, D. M. Cottrell, “Random mask encoding of multiplexed phase-only and binary phase-only filters,” Opt. Lett. 19, 496–498 (1994). [CrossRef] [PubMed]
  24. J. M. Goodman, “Effects of film nonlinearities,” in Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Sec. 8-6, pp. 230–241.
  25. To maintain as much consistency as possible in comparing all the curves and tables and to avoid excessive computation, we have calculated and reported all performance met-rics for values of γ=1, 1.1, 1.2,… .This results in adequately smooth and sampled curves except in one case. For the SPRmcurve of ED–PRE in Fig. 5, finer sampling led to a significant increase in SPRm,from 53 at γ=1.2and 1.3 to 60 at γ=1.26.This additional point is included in the plot in Fig. 5. We also checked the maxima of other SPR and SPRmperformance curves, using finer sampling increments. However, since the change in appearance is minimal and the maximum values of the curves would change by no more than a few tenths, these additional findings are omitted.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited