OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1642–1649

Principles of calculating the dynamical response of misaligned complex resonant optical interferometers

Daniel Sigg and Nergis Mavalvala  »View Author Affiliations


JOSA A, Vol. 17, Issue 9, pp. 1642-1649 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001642


View Full Text Article

Enhanced HTML    Acrobat PDF (181 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the long-baseline laser interferometers for measuring gravitational waves that are now under construction, understanding the dynamical response to small distortions such as angular alignment fluctuations presents a unique challenge. These interferometers comprise multiple coupled optical resonators with light storage times approaching 100 m. We present a basic formalism to calculate the frequency dependence of periodic variations in angular alignment and longitudinal displacement of the resonator mirrors. The electromagnetic field is decomposed into a superposition of higher-order spatial modes, Fourier frequency components, and polarization states. Alignment fluctuations and length variations of free-space propagation are represented by matrix operators that act on the multicomponent state vectors of the field.

© 2000 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(220.1140) Optical design and fabrication : Alignment

History
Original Manuscript: October 20, 1999
Revised Manuscript: May 10, 2000
Manuscript Accepted: May 10, 2000
Published: September 1, 2000

Citation
Daniel Sigg and Nergis Mavalvala, "Principles of calculating the dynamical response of misaligned complex resonant optical interferometers," J. Opt. Soc. Am. A 17, 1642-1649 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-9-1642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Abramovici, W. Althouse, J. Camp, J. A. Giaime, A. Gillespie, S. Kawamura, A. Kuhnert, T. Lyons, F. J. Raab, R. L. Savage, D. Shoemaker, L. Sievers, R. Spero, R. Vogt, R. Weiss, S. Whitcomb, M. Zucker, “Improved sensitivity in a gravitational wave interferometer and implications for LIGO,” Phys. Lett. A 218, 157–163 (1996). [CrossRef]
  2. B. Caron, A. Dominjon, C. Drezen, R. Flaminio, X. Grave, F. Marion, L. Massonnet, C. Mehmel, R. Morand, B. Mours, V. Sannibale, M. Yvert, D. Babusci, S. Bellucci, S. Candusso, G. Giordano, G. Matone, J.-M. Mackowski, L. Pinard, F. Barone, E. Calloni, L. DiFiore, M. Flagiello, F. Garuti, A. Grado, M. Longo, M. Lops, S. Marano, L. Milano, S. Solimeno, V. Brisson, F. Cavalier, M. Davier, P. Hello, P. Heusse, P. Mann, Y. Acker, M. Barsuglia, B. Bhawal, F. Bondu, A. Brillet, H. Heitmann, J.-M. Innocent, L. Latrach, C. N. Man, M. PhamTu, E. Tournier, M. Taubmann, J.-Y. Vinet, C. Boccara, P. Gleyzes, V. Loriette, J.-P. Roger, G. Cagnoli, L. Gammaitoni, J. Kovalik, F. Marchesoni, M. Punturo, M. Beccaria, M. Bernardini, E. Bougleux, S. Braccini, C. Bradaschia, G. Cella, A. Ciampa, E. Cuoco, G. Curci, R. DelFabbro, R. DeSalvo, A. DiVirgilio, D. Enard, I. Ferrante, F. Fidecaro, A. Giassi, A. Giazotto, L. Holloway, P. LaPenna, G. Losurdo, S. Mancini, M. Mazzoni, F. Palla, H.-B. Pan, D. Passuello, P. Pelfer, R. Poggiani, R. Stanga, A. Vicere, Z. Zhang, V. Ferrari, E. Majorana, P. Puppo, P. Rapagnani, F. Ricci, “The VIRGO interferometer for gravitational wave detection,” Nucl. Phys. B54, 167–175 (1997).
  3. K. Danzmann, “GEO 600—a 600-m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizella, F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 100–111.
  4. K. Tsubono, “300-m laser interferometer gravitational wave detector (TAMA300) in Japan,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizella, F. Ronga, eds. (World Scientific, Singapore, 1995), pp. 112–114.
  5. P. Fritschel, G. Gonzlez, N. Mavalvala, D. Shoemaker, D. Sigg, M. Zucker, “Alignment of a long-baseline gravitational wave interferometer,” Appl. Opt. 37, 6734–6747 (1998). [CrossRef]
  6. J.-Y. Vinet, B. J. Meers, C. N. Man, A. Brillet, “Optimization of long-baseline optical interferometers for gravitational-wave detection,” Phys. Rev. D 38, 433–447 (1988). [CrossRef]
  7. B. J. Meers, “The frequency response of interferometric gravitational wave detectors,” Phys. Lett. A 142, 465–470 (1989). [CrossRef]
  8. D. Z. Anderson, “Alignment of resonant optical cavities,” Appl. Opt. 23, 2944–2949 (1984). [CrossRef] [PubMed]
  9. N. Sampas, D. Z. Anderson, “Stabilization of laser beam alignment to an optical resonator by heterodyne detection of off-axis modes,” Appl. Opt. 29, 394–403 (1990). [CrossRef] [PubMed]
  10. E. Morrison, B. J. Meers, D. I. Robertson, H. Ward, “Experimental demonstration of an automatic alignment system for optical interferometers,” Appl. Opt. 33, 5037–5040 (1994). [CrossRef] [PubMed]
  11. E. Morrison, B. J. Meers, D. I. Robertson, H. Ward, “Automatic alignment of optical interferometers,” Appl. Opt. 33, 5041–5049 (1994). [CrossRef] [PubMed]
  12. Y. Hefetz, N. Mavalvala, D. Sigg, “Principles of calculating alignment signals in complex resonant optical interferometers,” J. Opt. Soc. Am. B 14, 1597–1605 (1997). [CrossRef]
  13. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 13, p. 663.
  14. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  15. J. B. Camp, H. Yamamoto, S. E. Whitcomb, D. E. McClelland, “Analysis of light noise sources in a recycled Michelson interferometer with Fabry-Perot arms,” J. Opt. Soc. Am. A 17, 120–128 (2000). [CrossRef]
  16. J.-Y. Vinet, P. Hello, C. N. Man, A. Brillet, “A high-accuracy method for the simulation of non-ideal optical cavities,” J. Phys. (Paris) I 2, 1287–1303 (1992).
  17. P. Saha, “Fast estimation of transverse fields in high-finesse optical cavities,” J. Opt. Soc. Am. A 14, 2195–2202 (1997). [CrossRef]
  18. B. Bochner, “Modeling the performance of interferometric gravitational-wave detectors with realistically imperfect optics,” Ph.D. thesis (Massachusetts Institute of Technology, Cambridge, Mass., 1998).
  19. D. Redding, L. Sievers, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91109 (personal communication, August1997).
  20. B. Bhawal, “Real-time simulation of interferometric gravitational-wave detectors involving moving mirrors,” J. Opt. Soc. Am. A 15, 120–143 (1998). [CrossRef]
  21. R. G. Beausoleil, D. Sigg, “Spatiotemporal model of the LIGO interferometer,” J. Opt. Soc. Am. A 16, 2990–3002 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited