OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1659–1670

Optical tomography in the presence of void regions

Hamid Dehghani, Simon R. Arridge, Martin Schweiger, and David T. Delpy  »View Author Affiliations


JOSA A, Vol. 17, Issue 9, pp. 1659-1670 (2000)
http://dx.doi.org/10.1364/JOSAA.17.001659


View Full Text Article

Enhanced HTML    Acrobat PDF (1342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There is a growing interest in the use of near-infrared spectroscopy for the noninvasive determination of the oxygenation level within biological tissue. Stemming from this application, there has been further research in the use of this technique for obtaining tomographic images of the neonatal head, with the view of determining the levels of oxygenated and deoxygenated blood within the brain. Owing to computational complexity, methods used for numerical modeling of photon transfer within tissue have usually been limited to the diffusion approximation of the Boltzmann transport equation. The diffusion approximation, however, is not valid in regions of low scatter, such as the cerebrospinal fluid. Methods have been proposed for dealing with nonscattering regions within diffusing materials through the use of a radiosity-diffusion model. Currently, this new model assumes prior knowledge of the void region location; therefore it is instructive to examine the errors introduced in applying a simple diffusion-based reconstruction scheme in cases in which there exists a nonscattering region. We present reconstructed images of objects that contain a nonscattering region within a diffusive material. Here the forward data is calculated with the radiosity-diffusion model, and the inverse problem is solved with either the radiosity-diffusion model or the diffusion-only model. The reconstructed images show that even in the presence of only a thin nonscattering layer, a diffusion-only reconstruction will fail. When a radiosity-diffusion model is used for image reconstruction, together with a priori information about the position of the nonscattering region, the quality of the reconstructed image is considerably improved. The accuracy of the reconstructed images depends largely on the position of the anomaly with respect to the nonscattering region as well as the thickness of the nonscattering region.

© 2000 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.1990) Scattering : Diffusion

History
Original Manuscript: November 11, 1999
Manuscript Accepted: April 18, 2000
Published: September 1, 2000

Citation
Hamid Dehghani, Simon R. Arridge, Martin Schweiger, and David T. Delpy, "Optical tomography in the presence of void regions," J. Opt. Soc. Am. A 17, 1659-1670 (2000)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-17-9-1659


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for near infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991). [CrossRef]
  2. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef] [PubMed]
  3. C. P. Gonatas, M. Ishii, J. S. Leigh, J. C. Schotland, “Optical diffusion imaging using a direct inversion method,” Phys. Rev. E 52, 4361–4365 (1995). [CrossRef]
  4. Ch. L. Matson, N. Clark, L. McMackin, J. S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36, 214–220 (1997). [CrossRef] [PubMed]
  5. X. D. Li, T. Durduran, A. G. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997). [CrossRef] [PubMed]
  6. S. A. Walker, S. Fantini, E. Gratton, “Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media,” Appl. Opt. 36, 170–179 (1997). [CrossRef] [PubMed]
  7. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995). [CrossRef] [PubMed]
  8. S. B. Colak, D. G. Papaioannou, G. W. t’Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 181–213 (1997). [CrossRef]
  9. P. N. den Outer, Th. M. Nieuwenhuizen, A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10, 1209–1218 (1993). [CrossRef]
  10. S. Feng, F. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 35, 3826–3836 (1995). [CrossRef]
  11. J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997). [CrossRef]
  12. S. J. Norton, T. Vo-Dinh, “Diffraction tomographic imaging with photon density waves: an explicit solution,” J. Opt. Soc. Am. A 15, 2670–2677 (1998). [CrossRef]
  13. S. A. Walker, D. A. Boas, E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments,” Appl. Opt. 37, 1935–1944 (1998). [CrossRef]
  14. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumor in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998). [CrossRef]
  15. J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999). [CrossRef]
  16. J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine. I. experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997). [CrossRef] [PubMed]
  17. S. R. Arridge, “Topical review: optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  18. S. R. Arridge, J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997). [CrossRef] [PubMed]
  19. P. van der Zee, “Measurement and modelling of the optical properties of human tissue in the near infrared,” Ph.D. dissertation (University College London, London, 1993).
  20. G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissue and tissuelike phantoms,” Opt. Lett. 33, 6699–6710 (1994).
  21. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef] [PubMed]
  22. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed]
  23. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996). [CrossRef]
  24. A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogenous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998). [CrossRef] [PubMed]
  25. S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000). [CrossRef] [PubMed]
  26. R. A. J. Groenhuis, H. A. Ferwada, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements” (parts 1 and 2), Appl. Opt. 22, 2456–2467 (1983). [CrossRef] [PubMed]
  27. T. Nakai, G. Nishimura, K. Yamamoto, M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541–2549 (1997). [CrossRef]
  28. M. Bassani, F. Martelli, G. Zaccanti, D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22, 853–855 (1997). [CrossRef] [PubMed]
  29. M. F. Cohen, J. R. Wallace, Radiosity and Realistic Image Synthesis (Academic, London, 1993).
  30. M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996). [CrossRef] [PubMed]
  31. J. Ripoll, S. R. Arridge, H. Dehghani, M. Nieto-Vesperinas, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000). [CrossRef]
  32. M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging, Lecture Notes in Computer Science, J. Duncan, G. Gindi, eds. (Springer-Verlag, Berlin, 1997), Vol. 1230, pp. 71–84. [CrossRef]
  33. S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995). [CrossRef] [PubMed]
  34. S. R. Arridge, M. Schweiger, “Direct calculation of the Laplace transform of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 36, 9042–9049 (1997). [CrossRef]
  35. M. Schweiger, S. R. Arridge, “Application of temporal filters to time-resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999). [CrossRef] [PubMed]
  36. M. Schweiger, S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol. 44, 2703–2721 (1999). [CrossRef] [PubMed]
  37. M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993). [CrossRef]
  38. S. R. Arridge, M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Opt. Express 2, 213–226 (1998). [CrossRef] [PubMed]
  39. J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography by iterative-coordinate-descent optimization in a Baysian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999). [CrossRef]
  40. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near-infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993). [CrossRef]
  41. H. Dehghani, D. T. Delpy, S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999). [CrossRef]
  42. S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995). [CrossRef] [PubMed]
  43. E. Okada, D. T. Delpy, “The effect of overlaying tissue on NIR light propagation in neonatal brain,” Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 338–343.
  44. J. Ripoll, S. R. Arridge, M. Nieto-Vesperinas, “Effect of roughness in nondiffusive regions within diffusive media,” manuscript available from J. Ripoll: jripoll@icmm.csic.es.
  45. V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen, J. P. Kaipio, “Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data,” Inverse Probl. 15, 1375–1391 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited