OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 18, Iss. 1 — Jan. 1, 2001
  • pp: 134–142

High-resolution Doppler-velocity estimation techniques for processing of coherent heterodyne pulsed lidar data

Ljuan L. Gurdev, Tanja N. Dreischuh, and Dimitar V. Stoyanov  »View Author Affiliations

JOSA A, Vol. 18, Issue 1, pp. 134-142 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (237 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



On the basis of an analysis of the autocovariance of the complex heterodyne signal, some novel algorithms are derived and are investigated for use in determining, with high spatial resolution, Doppler-velocity coherent-lidar profiles in the case of rectangular and rectangularlike sensing laser pulses. These algorithms generalize other known Doppler-velocity estimators for the more complex case of nonuniform scattering and Doppler-velocity distribution within the pulse length. Algorithm performance and efficiency are studied and are illustrated by computer simulations. It is shown that the Doppler-velocity profiles can be determined with essentially better resolution in comparison with the use of other known estimation approaches, but at the expense of some increase in the number of statistical realizations (number of laser shots) required to reduce the speckle-noise effect. The minimum achievable resolution interval is shown to be much shorter than the pulse length.

© 2001 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

Original Manuscript: October 22, 1999
Revised Manuscript: June 9, 2000
Manuscript Accepted: June 9, 2000
Published: January 1, 2001

Ljuan L. Gurdev, Tanja N. Dreischuh, and Dimitar V. Stoyanov, "High-resolution Doppler-velocity estimation techniques for processing of coherent heterodyne pulsed lidar data," J. Opt. Soc. Am. A 18, 134-142 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990). [CrossRef] [PubMed]
  2. R. Frehlich, S. M. Hannon, S. W. Henderson, “Coherent Doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997). [CrossRef] [PubMed]
  3. A. V. Jelalian, R. M. Huffaker, “Laser Doppler techniques for remote wind velocity measurements,” in Specialist Conference on Molecular Radiation (Marshall Space Flight Center, Huntsville, Ala., 1967), pp. 345–358.
  4. R. Nordstrom, “A dual sensor role for pulsed CO2 laser,” Photonics Spectra 23, 89–98 (1989).
  5. S. M. Hannon, J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41, 2175–2196 (1994). [CrossRef]
  6. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991). [CrossRef] [PubMed]
  7. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, Ph. Brockman, R. S. Calloway, S. H. Klein, P. A. Robinson, “Coherent lidar airborne wind sensor. II. Flight-test results at 2 and 10 μm,” Appl. Opt. 35, 7117–7127 (1996). [CrossRef] [PubMed]
  8. L. L. Gurdev, T. N. Dreischuh, D. V. Stoyanov, “Deconvolution techniques for improving the resolution of long-pulse lidars,” J. Opt. Soc. Am. A 10, 2296–2306 (1993). [CrossRef]
  9. T. N. Dreischuh, L. L. Gurdev, D. V. Stoyanov, “Lidar profile deconvolution algorithms for some rectangular-like laser pulse shapes,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Raioux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 135–138.
  10. E. V. Stoykova, L. L. Gurdev, B. M. Bratanov, M. D. Angelova, D. V. Stoyanov, “Low Doppler velocity estimation in infrared coherent lidars,” in Proceedings of the 15th International Laser Radar Conference, Part II (Institute of Atmospheric Optics, Tomsk, Russia, 1990), pp. 413–417.
  11. K. S. Miller, M. M. Rochwarger, “A covariance approach to spectral moment estimation,” IEEE Trans. Inf. Theory IT-18, 588–596 (1972). [CrossRef]
  12. M. R. Harris, D. V. Willets, “Performance characteristics of a TE CO2laser with a long excitation pulse,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 5–7.
  13. L. L. Gurdev, T. N. Dreischuh, D. V. Stoyanov, “High-resolution processing of long-pulse-lidar data,” NASA Conf. Publ. 3158, 637–640 (1992).
  14. A. Dabas, Ph. Salamitou, D. Oh, M. Georges, J. L. Zarader, P. H. Flamant, “Lidar signal simulation and processing,” in Proceedings of the Seventh Conference on Coherent Laser Radar: Applications and Technology, P. H. Flamant, ed. (Ecole Polytechnique, Paris, 1993), pp. 221–228.
  15. Ph. Salamitou, A. Dabas, P. Flamant, “Simulations in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–506 (1995). [CrossRef] [PubMed]
  16. J. Y. Wang, “Heterodyne laser radar SNR from a diffuse target containing multiple glints,” Appl. Opt. 21, 464–476 (1982). [CrossRef] [PubMed]
  17. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1: Single Scattering and Transport Theory (Academic, New York, 1978).
  18. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966). [CrossRef] [PubMed]
  19. J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983). [CrossRef] [PubMed]
  20. G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. A 4, 367–373 (1987). [CrossRef]
  21. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  22. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).
  23. V. I. Tatarski, Wave Propagation in Turbulent Atmosphere (Nauka, Moscow, 1967).
  24. I. N. Bronstein, K. A. Semendjajew, Taschenbuch der Mathematik (Gemeinschaftsausgabe Verlag Nauka, Moskau; BSB B. G. Teubner Verlagsgesellschaft, Leipzig, Germany, 1989).
  25. B. T. Lottman, R. G. Frehlich, “Evaluation of coherent Doppler lidar velocity estimators in nonstationary regimes,” Appl. Opt. 36, 7906–7918 (1997). [CrossRef]
  26. T. N. Dreischuh, L. L. Gurdev, D. V. Stoyanov, “Intercomparison between two approaches for improving the resolution of Doppler-velocity coherent-lidar profiles,” in Tenth International School on Quantum Electronics: Laser Physics and Applications, P. A. Atanasow, D. V. Stroyanov, eds., Proc. SPIE3571, 272–276 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited