A class of partially coherent beams carrying optical vortices
JOSA A, Vol. 18, Issue 1, pp. 150-156 (2001)
http://dx.doi.org/10.1364/JOSAA.18.000150
Acrobat PDF (340 KB)
Abstract
A new class of partially coherent beams with a separable phase, which carry optical vortices, is introduced. It is shown that any member of the class can be represented as an incoherent superposition of fully coherent Laguerre–Gauss modes of arbitrary order, with the same azimuthal mode index. The free-space propagation properties of such partially coherent beams are studied analytically, and their M^{2} quality factor is investigated numerically.
© 2001 Optical Society of America
OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.1640) Coherence and statistical optics : Coherence
Citation
Sergey A. Ponomarenko, "A class of partially coherent beams carrying optical vortices," J. Opt. Soc. Am. A 18, 150-156 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-1-150
Sort: Year | Journal | Reset
References
- E. Collett and E. Wolf, “Is complete coherence necessary for the generation of highly directional light beams?” Opt. Lett. 2, 27–29 (1978).
- A. Starikov and E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982).
- A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41, 383–387 (1982).
- R. Gase, “The multimode laser radiation as a Gaussian Schell-model beam,” J. Mod. Opt. 38, 1107–1115 (1991).
- R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993).
- R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10, 2008–2016 (1993).
- K. Sundar, R. Simon, and N. Mukunda, “Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10, 2017–2023 (1993).
- A. T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994).
- R. Simon and N. Mukunda, “Twist phase in Gaussian-beam optics,” J. Opt. Soc. Am. A 15, 95–109 (1998).
- F. Gori, G. Guattari, and C. Padovani, “Modal expansion for J_{0}-correlated Schell-model sources,” Opt. Commun. 64, 311–316 (1987).
- C. Palma, R. Borghi, and G. Cincotti, “Beams originated by J_{0}-correlated Schell-model planar sources,” Opt. Commun. 125, 113–121 (1996).
- J. D. Farina, L. M. Narducci, and E. Collett, “Generation of highly directional beams from globally incoherent source,” Opt. Commun. 32, 203–207 (1980).
- M. S. Zubairy and J. K. McIver, “Second harmonic generation by a partially coherent beam,” Phys. Rev. A 36, 202–206 (1987).
- K. M. Iftekharuddin and M. A. Karim, “Heterodyne detection by using diffraction-free beam: tilt and offset effects,” Appl. Opt. 31, 4853–4856 (1992); S. Klewitz, F. Brinkmann, S. Herminghaus, and P. Leiderer, “Bessel-beam-pumped tunable distribution-feedback laser,” Appl. Opt. 34, 7670–7673 (1995).
- V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
- L. Allen, M. W. Bejersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
- M. W. Bejersbergen, L. Allen, H. E. L. O. van der Ween, and J. P. Woerdman, “Astigmatic laser mode converter and transfer of angular momentum,” Opt. Commun. 96, 123–132 (1993).
- M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1998).
- M. Harris, C. A. Hill, and J. M. R. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106, 161–166 (1994).
- F. Gori, M. Santarsiero, R. Borghi, and S. Vicalvi, “Partially coherent sources with helicoidal modes,” J. Mod. Opt. 45, 539–554 (1998).
- G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993).
- C. Patereson and R. Smith, “Helicon waves: propagation invariant waves in a rotating coordinate system,” Opt. Commun. 124, 131–139 (1996).
- C. Patereson, “Diffractional elements with spiral phase dislocations,” J. Mod. Opt. 41, 757–765 (1994).
- A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 16.
- L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995).
- For brevity, in the rest of the paper the frequency dependence of the mode functions is omitted.
- I. S. Gradstein and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1980).
- A. P. Prudnikov, Yu. A. Brichkov, and O. I. Marichev, Integrals and Series (Gordon, New York, 1992).
- F. Gori, “Why is the Fresnel transform so little known?” in Current Trends in Optics, J. C. Dainty, ed. (Academic, New York, 1994), pp. 139–148.
- The definition of the Fresnel transform adopted here differs from the one given in Ref. 29 by a constant factor.
- R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985).
- R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and generalized ABCD-law,” Opt. Commun. 65, 322–328 (1988).
- A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2–14 (1990).
- S. Ramee and R. Simon, “Effect of holes and vortices on beam quality,” J. Opt. Soc. Am. A 17, 84–94 (2000).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.