Relationship between elegant Laguerre–Gauss and Bessel–Gauss beams
JOSA A, Vol. 18, Issue 1, pp. 177-184 (2001)
http://dx.doi.org/10.1364/JOSAA.18.000177
Acrobat PDF (192 KB)
Abstract
We show that the elegant Laguerre–Gauss light beams of high radial order n are asymptotically equal to Bessel–Gauss light beams. The Bessel–Gauss beam equivalent to each elegant Laguerre–Gauss beam is found and shown to have almost identical propagation factors M^{2}. In the limit n→∞, elegant Laguerre–Gauss beams can be identified with Durnin’s Bessel beam. Our results suggest a new experimental procedure for generating light beams with nondiffractinglike properties directly from the output of a stable resonator.
© 2001 Optical Society of America
OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(140.3300) Lasers and laser optics : Laser beam shaping
(260.1960) Physical optics : Diffraction theory
(350.5500) Other areas of optics : Propagation
Citation
Miguel A. Porras, Riccardo Borghi, and Massimo Santarsiero, "Relationship between elegant Laguerre–Gauss and Bessel–Gauss beams," J. Opt. Soc. Am. A 18, 177-184 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-1-177
Sort: Year | Journal | Reset
References
- N. G. Vakhimov, “Open resonators with mirrors having variable reflection coefficients,” Radio Eng. Electron. Phys. (USSR) 10, 1439–1446 (1965).
- H. Zucker, “Optical resonators with variable reflectivity mirrors,” Bell Syst. Tech. J. 49, 2349–2376 (1970).
- J. A. Arnaud, “Mode coupling in first-order optics,” J. Opt. Soc. Am. 61, 751–758 (1971).
- L. W. Casperson, “Beam modes in complex lenslike media and resonators,” J. Opt. Soc. Am. 66, 1373–1379 (1976).
- A. E. Siegman, “Hermite–Gaussian functions of complex argument as optical-beam eigenfunctions,” J. Opt. Soc. Am. 63, 1093–1094 (1973).
- J. A. Arnaud, “Hamiltonian theory of beam mode propagation,” Prog. Opt. 11, 247–304 (1973).
- R. Pratesi and L. Ronchi, “Generalized Gaussian beams in free space,” J. Opt. Soc. Am. 67, 1274–1276 (1977).
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
- A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
- T. Takenaka, M. Yokota, and O. Fukumitsu, “Propagation of light beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 2, 826–829 (1985).
- E. Zauderer, “Complex argument Hermite–Gaussian and Laguerre–Gaussian beams,” J. Opt. Soc. Am. A 3, 465–469 (1986).
- E. Heyman and I. Beracha, “Complex multipole pulsed beams and Hermite pulsed beams: a novel expansion scheme for transient radiation from well-collimated apertures,” J. Opt. Soc. Am. A 9, 1779–1793 (1992).
- M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
- M. Yokota, T. Takenaka, and O. Fukumitsu, “Relations between conventional and complex beams,” Trans. Inst. Electron. Commun. Eng. Jpn. 68-C, 1130–1131 (1985).
- S. Saghafi and C. J. R. Sheppard, “Near field and far field of elegant Hermite–Gaussian and Laguerre–Gaussian modes,” J. Mod. Opt. 45, 1999–2009 (1998).
- C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” Microwaves Opt. Acoust. 2, 105–112 (1978).
- F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987).
- J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Nondiffracting beams,” Phys. Rev. Lett. 58, 1499–1502 (1987).
- J. Rosen, B. Salik, A. Yariv, and H. K. Liu, “Pseudonondiffracting slitlike beam and its analogy to the pseudonondispersing pulse,” Opt. Lett. 20, 423–425 (1995).
- Q. Cao and S. Chi, “Axially symmetric on-axis flat-top beam,” J. Opt. Soc. Am. A 17, 447–455 (2000).
- V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, “Generalized Bessel–Gauss beams,” J. Mod. Opt. 43, 1155–1166 (1996).
- M. Santarsiero, “Propagation of generalized Bessel–Gauss beams through ABCD optical systems,” Opt. Commun. 132, 1–7 (1996).
- R. Borghi and M. Santarsiero, “M^{2} factor of Bessel–Gauss beams,” Opt. Lett. 22, 262–264 (1997).
- F. Gori, G. Guattari, and C. Padovani, “Modal expansion for J_{0}-correlated Schell-model sources,” Opt. Commun. 64, 311–316 (1987).
- C. Palma, R. Borghi, and G. Cincotti, “Beams originated by J_{0}-correlated Schell-model planar sources,” Opt. Commun. 125, 113–121 (1996).
- R. Borghi, “Superposition scheme for J_{0}-correlated partially coherent sources,” IEEE J. Quantum Electron. 35, 849–856 (1999).
- A. V. Shchegrov and E. Wolf, “Partially coherent conical beams,” Opt. Lett. 25, 141–143 (2000).
- R. H. Jordan and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss solution,” Opt. Lett. 19, 427–429 (1994).
- D. G. Hall, “Vector-beam solution of Maxwell’s wave equation,” Opt. Lett. 21, 9–12 (1996).
- C. Olson, P. L. Greene, G. W. Wicks, D. G. Hall, and S. Rishton, “High-order azimuthal spatial modes of concentric-circle-grating surface-emitting semiconductor lasers,” Appl. Phys. Lett. 72, 1284–1286 (1998).
- P. L. Greene and D. G. Hall, “Properties and diffraction of vector Bessel–Gauss beams,” J. Opt. Soc. Am. A 15, 3020–3027 (1998).
- B. Glushko, B. Kryzhanovsky, and D. Sarkisyan, “Self-phase-matching mechanism for efficient harmonic generation processes in a ring pump beam geometry,” Phys. Rev. Lett. 71, 243–246 (1993).
- S. P. Tewari, H. Huang, and R. W. Boyd, “Theory of third-harmonic generation using Bessel beams, and self-phase matching,” Phys. Rev. A 54, 2314–2325 (1996).
- C. F. R. Caron and R. M. Potvliege, “Phase matching and harmonic generation in Bessel–Gauss beams,” J. Opt. Soc. Am. B 15, 1096–1106 (1998).
- J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Efficiency of second-harmonic generation with Bessel beams,” Phys. Rev. A 60, 2438–2441 (1999).
- C. Altucci, R. Bruzzese, D. D’Antuoni, C. de Lisio, and S. Solimeno, “Harmonic generation in gases by use of Bessel–Gauss laser beams,” J. Opt. Soc. Am. B 17, 34–42 (2000).
- P. Pääkkönen and J. Turunen, “Resonators with Bessel–Gauss modes,” Opt. Commun. 156, 359–366 (1998).
- A. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2–14 (1990).
- J. Durnin, J. J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13, 79–80 (1988).
- B. Hafizi and P. Sprangle, “Diffracted effects in directed radiation beams,” J. Opt. Soc. Am. A 8, 705–717 (1991).
- I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1980).
- P. M. Mejías, H. Weber, R. Martínez-Herrero, and A. González-Ureña, eds., Proceedings of the Workshop on Laser Beam Characterization (Sociedad Espanola de Optica, Madrid, 1993); H. Weber, N. Reng, J. Lüdtke, and P. M. Mejías, eds., Laser Beam Characterization (Festkörper-Laser-Institute, Berlin, 1994); M. Morin and A. Giesen, eds., Third International Workshop on Laser Beam and Op-tics Characterization, Proc. SPIE 2870 (1996); A. Giesen and M. Morin, eds., Proceedings of the Fourth International Workshop on Laser Beam and Optics Characterization (Institut für Strahlwerkzeuge, Munich, 1997).
- R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and a generalized ABCD law,” Opt. Commun. 65, 322–328 (1988).
- P. A. Bélanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16, 196–198 (1991).
- A. Siegman, “Defining the effective radius of curvature of a nonideal optical beam,” IEEE J. Quantum Electron. 27, 1146–1148 (1991).
- S. Saghafi and C. J. R. Sheppard, “The beam propagation factor for higher-order Gaussian beams,” Opt. Commun. 153, 207–210 (1998).
- M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
- See, for example, M. J. Padgett and L. Allen, “The angular momentum of light: optical spanners and the rotational frequency shift,” Opt. Quantum Electron. 31, 1–12 (1999), and references therein.
- R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1978).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.