OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 18, Iss. 1 — Jan. 1, 2001
  • pp: 185–194

Soft-decision array decoding for volume holographic memory systems

Wu-chun Chou and Mark A. Neifeld  »View Author Affiliations


JOSA A, Vol. 18, Issue 1, pp. 185-194 (2001)
http://dx.doi.org/10.1364/JOSAA.18.000185


View Full Text Article

Acrobat PDF (297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the use of soft-decision array decoding in a volume holographic memory (VHM) system that is corrupted by interpixel interference (IPI) and detector noise. Soft-decision methods can unify equalization and error decoding. A highly parallel array decoder is presented in the context of two-dimensional low-pass channel mitigation and error correction. The new decoding algorithm is motivated by iterative turbo-decoding methods and is capable of incorporating a priori knowledge of the corrupting IPI channel during decoding. The resulting joint detection decoding algorithm is shown to offer VHM capacity and density performance superior to that of hard-decision n=255 Reed–Solomon codes in concatenation with a Wiener filter.

© 2001 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(200.3050) Optics in computing : Information processing
(210.2860) Optical data storage : Holographic and volume memories

Citation
Wu-chun Chou and Mark A. Neifeld, "Soft-decision array decoding for volume holographic memory systems," J. Opt. Soc. Am. A 18, 185-194 (2001)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-1-185


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. J. van Heerden, “A new optical method of storing and retrieving information,” Appl. Opt. 2, 387–392 (1963).
  2. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998).
  3. H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgaonkar, “Intensity dependence and white-light gating of two-color photorefractive gratings in LiNbO3,” Opt. Lett. 22, 1305–1307 (1997).
  4. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
  5. W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, M. S. Bratcher, and R. J. Twieg, “Recent advances in photorefractive polymer materials,” in Nonlinear Optical Properties of Organic Materials X, M. G. Kuzyk, ed., Proc. SPIE 3147, 84–94 (1997).
  6. J. D. Downie, D. A. Timuçin, D. T. Smithey, and M. Crew, “Long holographic lifetimes in bacteriorhodopsin films,” Opt. Lett. 23, 730–732 (1998).
  7. J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Appl. Opt. 34, 2193–2203 (1995).
  8. H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
  9. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
  10. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, and G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509–1511 (1997).
  11. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
  12. E. S. Maniloff, S. B. Altner, S. Bernet, F. R. Graf, A. Renn, and U. P. Wild, “Recording of 6000 holograms by use of spectral hole burning,” Appl. Opt. 34, 4140–4148 (1995).
  13. S. A. Domrovskii, “Effectiveness of using error-correcting codes in holographic storage systems,” Avtometriya 2, 57–61 (1989).
  14. M. A. Neifeld and M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994).
  15. B. J. Goertzen and P. A. Mitkas, “Error-correcting codes for volume holographic storage of a relational database,” Opt. Lett. 20, 1655–1657 (1995).
  16. J. F. Heanue, K. Gürkan, and L. Hesselink, “Signal detection for page-access optical memories with intersymbol interference,” Appl. Opt. 35, 2431–2438 (1996).
  17. G. A. Betzos, J. F. Hutton, M. Porter, and P. A. Mitkas, “Evaluation of array codes for page-oriented optical memories,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 204–206.
  18. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997).
  19. V. Vadde and B. V. K. V. Kumar, “Channel estimation and intra-page equalization for digital volume holographic data storage,” in Optical Data Storage 1997 Topical Meeting, H. Birecki and J. Z. Kwiecien, eds., Proc. SPIE 3109, 245–250 (1997).
  20. B. M. King and M. A. Neifeld, “Parallel detection algorithm for page-oriented optical memories,” Appl. Opt. 37, 6275–6298 (1998).
  21. X. Chen, K. M. Chugg, and M. A. Neifeld, “Near-optimal parallel distributed data detection for page-oriented optical memories,” IEEE J. Sel. Top. Quantum Electron. 4, 866–879 (1998).
  22. K. M. Chugg, X. Chen, and M. A. Neifeld, “Two-dimensional equalization in coherent and incoherent page-oriented optical memory,” J. Opt. Soc. Am. A 16, 549–562 (1999).
  23. S. Lin and C. Daniel J., Jr., Error Control Coding: Fundamentals and Applications (Prentice-Hall, Englewood Cliffs, N.J., 1983).
  24. D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
  25. D. Brady and D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992).
  26. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
  27. R. J. G. Smith, “Easily decodable efficient self-orthogonal block codes,” Electron. Lett. 13, 173–174 (1977).
  28. J. Hagenauer, “Source-controlled channel decoding,” IEEE Trans. Commun. 43, 2449–2457 (1995).
  29. J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inf. Theory 42, 429–445 (1996).
  30. C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: turbo-codes (1),” in IEEE International Conference on Communications Proceedings (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 1064–1070.
  31. C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun. 44, 1261–1271 (1996).
  32. S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on parallel concatenated coding schemes,” IEEE Trans. Inf. Theory 42, 409–428 (1996).
  33. S. Benedetto, D. Divsalar, and J. Hagenauer, “Guest editorial: Concatenated coding techniques and iterative decoding: sailing toward channel capacity,” IEEE J. Sel. Areas Commun. 16, 137–139 (1998).
  34. M. A. Neifeld, K. M. Chugg, and B. M. King, “Parallel data detection in page-oriented optical memory,” Opt. Lett. 21, 1481–1483 (1996).
  35. H. L. V. Trees, Detection, Estimation, and Modulation Theory (Wiley, New York, 1968).
  36. M.-P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited